Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v161y2017icp1-4.html
   My bibliography  Save this article

The inefficiency of Bitcoin revisited: A dynamic approach

Author

Listed:
  • Bariviera, Aurelio F.
Abstract
This letter revisits the informational efficiency of the Bitcoin market. In particular we analyze the time-varying behavior of long memory of returns on Bitcoin and volatility 2011 until 2017, using the Hurst exponent. Our results are twofold. First, R/S method is prone to detect long memory, whereas DFA method can discriminate more precisely variations in informational efficiency across time. Second, daily returns exhibit persistent behavior in the first half of the period under study, whereas its behavior is more informational efficient since 2014. Finally, price volatility, measured as the logarithmic difference between intraday high and low prices exhibits long memory during all the period. This reflects a different underlying dynamic process generating the prices and volatility.

Suggested Citation

  • Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
  • Handle: RePEc:eee:ecolet:v:161:y:2017:i:c:p:1-4
    DOI: 10.1016/j.econlet.2017.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176517303804
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2017.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cajueiro, Daniel O. & Tabak, Benjamin M., 2010. "Fluctuation dynamics in US interest rates and the role of monetary policy," Finance Research Letters, Elsevier, vol. 7(3), pages 163-169, September.
    2. Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
    3. Grau-Carles, Pilar, 2000. "Empirical evidence of long-range correlations in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 396-404.
    4. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    5. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    6. Ito, Mikio & Sugiyama, Shunsuke, 2009. "Measuring the degree of time varying market inefficiency," Economics Letters, Elsevier, vol. 103(1), pages 62-64, April.
    7. Benjamin M. Blau & Ryan J. Whitby, 2014. "Speculative Trading In Reits," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 37(1), pages 55-74, February.
    8. Cajueiro, Daniel O. & Gogas, Periklis & Tabak, Benjamin M., 2009. "Does financial market liberalization increase the degree of market efficiency? The case of the Athens stock exchange," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 50-57, March.
    9. Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-11, October.
    10. Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights," Papers 1503.06704, arXiv.org, revised Oct 2015.
    11. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    12. Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights," Post-Print hal-01277584, HAL.
    13. Kim, Jae H. & Shamsuddin, Abul & Lim, Kian-Ping, 2011. "Stock return predictability and the adaptive markets hypothesis: Evidence from century-long U.S. data," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 868-879.
    14. Bariviera, Aurelio Fernández, 2011. "The influence of liquidity on informational efficiency: The case of the Thai Stock Market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4426-4432.
    15. Carbone, A. & Castelli, G. & Stanley, H.E., 2004. "Time-dependent Hurst exponent in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 267-271.
    16. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    17. John T. Barkoulas & Christopher F. Baum & Nickolaos Travlos, 1996. "Long Memory in the Greek Stock Market," Boston College Working Papers in Economics 356., Boston College Department of Economics.
    18. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    19. Cheung, Yin-Wong & Lai, Kon S., 1995. "A search for long memory in international stock market returns," Journal of International Money and Finance, Elsevier, vol. 14(4), pages 597-615, August.
    20. Daniel Cajueiro & Benjamin Tabak, 2006. "The long-range dependence phenomena in asset returns: the Chinese case," Applied Economics Letters, Taylor & Francis Journals, vol. 13(2), pages 131-133.
    21. Blau, Benjamin M., 2018. "Price dynamics and speculative trading in Bitcoin," Research in International Business and Finance, Elsevier, vol. 43(C), pages 15-21.
    22. Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
    23. Serinaldi, Francesco, 2010. "Use and misuse of some Hurst parameter estimators applied to stationary and non-stationary financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2770-2781.
    24. Benoit B. Mandelbrot, 1972. "Statistical Methodology for Nonperiodic Cycles: From the Covariance To R/S Analysis," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 1, number 3, pages 259-290, National Bureau of Economic Research, Inc.
    25. Bariviera, A.F. & Guercio, M. Belén & Martinez, Lisana B., 2012. "A comparative analysis of the informational efficiency of the fixed income market in seven European countries," Economics Letters, Elsevier, vol. 116(3), pages 426-428.
    26. Aurelio Fernández Bariviera & M. Belén Guercio & Lisana B. Martinez, 2014. "Informational Efficiency in Distressed Markets: The Case of European Corporate Bonds," The Economic and Social Review, Economic and Social Studies, vol. 45(3), pages 349-369.
    27. Barkoulas, John T. & Baum, Christopher F., 1996. "Long-term dependence in stock returns," Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisana B. Martinez & M. Belén Guercio & Aurelio Fernandez Bariviera & Antonio Terceño, 2018. "The impact of the financial crisis on the long-range memory of European corporate bond and stock markets," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 45(1), pages 1-15, February.
    2. Bariviera, A.F. & Guercio, M. Belén & Martinez, Lisana B., 2012. "A comparative analysis of the informational efficiency of the fixed income market in seven European countries," Economics Letters, Elsevier, vol. 116(3), pages 426-428.
    3. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    4. Arouxet, M. Belén & Bariviera, Aurelio F. & Pastor, Verónica E. & Vampa, Victoria, 2022. "Covid-19 impact on cryptocurrencies: Evidence from a wavelet-based Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    5. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    6. Bariviera, Aurelio F., 2021. "One model is not enough: Heterogeneity in cryptocurrencies’ multifractal profiles," Finance Research Letters, Elsevier, vol. 39(C).
    7. Aslanidis, Nektarios & Bariviera, Aurelio F. & Martínez-Ibañez, Oscar, 2019. "An analysis of cryptocurrencies conditional cross correlations," Finance Research Letters, Elsevier, vol. 31(C), pages 130-137.
    8. Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
    9. Aslanidis, Nektarios & Fernández Bariviera, Aurelio & Savva, Christos S., 2020. "Weekly dynamic conditional correlations among cryptocurrencies and traditional assets," Working Papers 2072/417680, Universitat Rovira i Virgili, Department of Economics.
    10. Zura Kakushadze & Jim Kyung-Soo Liew, 2018. "CryptoRuble: From Russia with Love," Papers 1801.05760, arXiv.org.
    11. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    12. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
    13. Sangram Keshari Jena & Aviral Kumar Tiwari & Buhari Doğan & Shawkat Hammoudeh, 2022. "Are the top six cryptocurrencies efficient? Evidence from time‐varying long memory," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3730-3740, July.
    14. Aurelio Fernández Bariviera & M. Belén Guercio & Lisana B. Martinez, 2014. "Informational Efficiency in Distressed Markets: The Case of European Corporate Bonds," The Economic and Social Review, Economic and Social Studies, vol. 45(3), pages 349-369.
    15. Aggarwal, Divya & Chandrasekaran, Shabana & Annamalai, Balamurugan, 2020. "A complete empirical ensemble mode decomposition and support vector machine-based approach to predict Bitcoin prices," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    16. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
    17. Aurelio F. Bariviera & Luciano Zunino & Osvaldo A. Rosso, 2018. "An analysis of high-frequency cryptocurrencies prices dynamics using permutation-information-theory quantifiers," Papers 1808.01926, arXiv.org.
    18. Christie Smith & Aaron Kumar, 2018. "Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
    19. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    20. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.

    More about this item

    Keywords

    Bitcoin; Long range dependence; Volatility; Hurst exponent;
    All these keywords.

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:161:y:2017:i:c:p:1-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.