Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v92y2021icp41-46.html
   My bibliography  Save this article

A game-theoretical model of the landscape theory

Author

Listed:
  • Le Breton, Michel
  • Shapoval, Alexander
  • Weber, Shlomo
Abstract
In this paper we examine a game-theoretical generalization of the landscape theory introduced by Axelrod and Bennett (1993). In their two-bloc setting each player ranks the blocs on the basis of the sum of her individual evaluations of members of the group. We extend the Axelrod–Bennett setting by allowing an arbitrary number of blocs and expanding the set of possible deviations to include multi-country gradual deviations. We show that a Pareto optimal landscape equilibrium which is immune to profitable gradual deviations always exists. We also indicate that while a landscape equilibrium is a stronger concept than Nash equilibrium in pure strategies, it is weaker than strong Nash equilibrium.

Suggested Citation

  • Le Breton, Michel & Shapoval, Alexander & Weber, Shlomo, 2021. "A game-theoretical model of the landscape theory," Journal of Mathematical Economics, Elsevier, vol. 92(C), pages 41-46.
  • Handle: RePEc:eee:mateco:v:92:y:2021:i:c:p:41-46
    DOI: 10.1016/j.jmateco.2020.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406820301257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2020.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Epstein, Amir & Feldman, Michal & Mansour, Yishay, 2009. "Strong equilibrium in cost sharing connection games," Games and Economic Behavior, Elsevier, vol. 67(1), pages 51-68, September.
    2. R. Florian & S. Galam, 2000. "Optimizing conflicts in the formation of strategic alliances," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 16(1), pages 189-194, July.
    3. Kukushkin, Nikolai S., 2019. "Equilibria in ordinal status games," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 130-135.
    4. Milchtaich, Igal, 1996. "Congestion Games with Player-Specific Payoff Functions," Games and Economic Behavior, Elsevier, vol. 13(1), pages 111-124, March.
    5. Bogomolnaia, Anna & Jackson, Matthew O., 2002. "The Stability of Hedonic Coalition Structures," Games and Economic Behavior, Elsevier, vol. 38(2), pages 201-230, February.
    6. Tayfun Sönmez & Suryapratim Banerjee & Hideo Konishi, 2001. "Core in a simple coalition formation game," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 18(1), pages 135-153.
    7. Mark Voorneveld & Peter Borm & Freek Van Megen & Stef Tijs & Giovanni Facchini, 1999. "Congestion Games And Potentials Reconsidered," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 1(03n04), pages 283-299.
    8. repec:fth:tilbur:9998 is not listed on IDEAS
    9. Milchtaich, Igal & Winter, Eyal, 2002. "Stability and Segregation in Group Formation," Games and Economic Behavior, Elsevier, vol. 38(2), pages 318-346, February.
    10. Andelman, Nir & Feldman, Michal & Mansour, Yishay, 2009. "Strong price of anarchy," Games and Economic Behavior, Elsevier, vol. 65(2), pages 289-317, March.
    11. Thomas Quint & Martin Shubik, 1994. "A Model of Migration," Cowles Foundation Discussion Papers 1088, Cowles Foundation for Research in Economics, Yale University.
    12. Axelrod, Robert & Bennett, D. Scott, 1993. "A Landscape Theory of Aggregation," British Journal of Political Science, Cambridge University Press, vol. 23(2), pages 211-233, April.
    13. Robert Axelrod & Will Mitchell & Robert E. Thomas & D. Scott Bennett & Erhard Bruderer, 1995. "Coalition Formation in Standard-Setting Alliances," Management Science, INFORMS, vol. 41(9), pages 1493-1508, September.
    14. Konishi, Hideo & Le Breton, Michel & Weber, Shlomo, 1997. "Equilibria in a Model with Partial Rivalry," Journal of Economic Theory, Elsevier, vol. 72(1), pages 225-237, January.
    15. Holzman, Ron & Law-Yone, Nissan, 1997. "Strong Equilibrium in Congestion Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 85-101, October.
    16. Tobias Harks & Max Klimm & Rolf Möhring, 2013. "Strong equilibria in games with the lexicographical improvement property," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 461-482, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kukushkin, Nikolai S., 2022. "Ordinal status games on networks," Journal of Mathematical Economics, Elsevier, vol. 100(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Breton, Michel & Weber, Shlomo, 2009. "Existence of Pure Strategies Nash Equilibria in Social Interaction Games with Dyadic Externalities," CEPR Discussion Papers 7279, C.E.P.R. Discussion Papers.
    2. Krzysztof R. Apt & Bart Keijzer & Mona Rahn & Guido Schäfer & Sunil Simon, 2017. "Coordination games on graphs," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(3), pages 851-877, August.
    3. Ryo Kawasaki & Hideo Konishi & Junki Yukawa, 2023. "Equilibria in bottleneck games," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 649-685, September.
    4. Tobias Harks & Max Klimm & Rolf Möhring, 2013. "Strong equilibria in games with the lexicographical improvement property," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 461-482, May.
    5. Nikolai Kukushkin, 2007. "Congestion games revisited," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(1), pages 57-83, September.
    6. Le Breton, Michel & Weber, Shlomo, 2004. "Group Formation with Heterogeneous Sets," IDEI Working Papers 288, Institut d'Économie Industrielle (IDEI), Toulouse.
    7. Kukushkin, Nikolai S., 2017. "Strong Nash equilibrium in games with common and complementary local utilities," Journal of Mathematical Economics, Elsevier, vol. 68(C), pages 1-12.
    8. Di Feng & Bettina Klaus, 2022. "Preference revelation games and strict cores of multiple‐type housing market problems," International Journal of Economic Theory, The International Society for Economic Theory, vol. 18(1), pages 61-76, March.
    9. Arnold, Tone & Wooders, Myrna, 2002. "Dynamic Club Formation with Coordination," Economic Research Papers 269414, University of Warwick - Department of Economics.
    10. Desmet, Klaus & Le Breton, Michel & Ortuno-Ortin, Ignacio, 2006. "Nation Formation and Genetic Diversity," IDEI Working Papers 133, Institut d'Économie Industrielle (IDEI), Toulouse.
    11. Samir Sbabou & Hatem Smaoui & Abderrahmane Ziad, 2013. "A formula for Nash equilibria in monotone singleton congestion games," Economics Bulletin, AccessEcon, vol. 33(1), pages 334-339.
    12. Kukushkin, Nikolai S., 2018. "A universal construction generating potential games," Games and Economic Behavior, Elsevier, vol. 108(C), pages 331-340.
    13. Kukushkin, Nikolai S., 2014. "Strong equilibrium in games with common and complementary local utilities," MPRA Paper 55499, University Library of Munich, Germany.
    14. Fatima Khanchouche & Samir Sbabou & Hatem Smaoui & Ziad Abderrahmane, 2023. "Congestion Games with Player-Specific Payoff Functions: The Case of Two Resources, Computation and Algorithms. First version," Economics Working Paper Archive (University of Rennes & University of Caen) 2023-08, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    15. Klaus Desmet & Michel Breton & Ignacio Ortuño-Ortín & Shlomo Weber, 2011. "The stability and breakup of nations: a quantitative analysis," Journal of Economic Growth, Springer, vol. 16(3), pages 183-213, September.
    16. Le Breton, Michel & Weber, Shlomo, 2011. "Games of social interactions with local and global externalities," Economics Letters, Elsevier, vol. 111(1), pages 88-90, April.
    17. Klaus Desmet & Michel Le Breton & Ignacio Ortuno-Ortin & Shlomo Weber, 2008. "Stability of Nations and Genetic Diversity," Working Papers 003-08, International School of Economics at TSU, Tbilisi, Republic of Georgia.
    18. Anna Bogomolnaia & Herve Moulin, 2023. "Fair congested assignment problem," Papers 2301.12163, arXiv.org, revised Feb 2024.
    19. Samir Sbabou & Hatem Smaoui & Abderrahmane Ziad, 2013. "Jeux de congestion finis à choix unique : Théorie, Equilibres, Applications -Calculs et Complexités-," Economics Working Paper Archive (University of Rennes & University of Caen) 201303, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    20. Emiliya Lazarova & Dinko Dimitrov, 2013. "Status-seeking in hedonic games with heterogeneous players," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(4), pages 1205-1229, April.

    More about this item

    Keywords

    Landscape theory; Landscape equilibrium; Blocs; Gradual deviation; Potential functions; Hedonic games;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D74 - Microeconomics - - Analysis of Collective Decision-Making - - - Conflict; Conflict Resolution; Alliances; Revolutions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:92:y:2021:i:c:p:41-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.