Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v11y2023i3p98-d1210595.html
   My bibliography  Save this article

The Changing Landscape of Financial Credit Risk Models

Author

Listed:
  • Tanja Verster

    (Centre for Business Mathematics and Informatics, North-West University, Potchefstroom 2531, South Africa
    National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch 7600, South Africa)

  • Erika Fourie

    (Pure and Applied Analytics, School of Mathematical and Statistical Sciences, North-West University, Potchefstroom 2531, South Africa)

Abstract
The landscape of financial credit risk models is changing rapidly. This study takes a brief look into the future of predictive modelling by considering some factors that influence financial credit risk modelling. The first factor is machine learning. As machine learning expands, it becomes necessary to understand how these techniques work and how they can be applied. The second factor is financial crises. Where predictive models view the future as a reflection of the past, financial crises can violate this assumption. This creates a new field of research on how to adjust predictive models to incorporate forward-looking conditions, which include future expected financial crises. The third factor considers the impact of financial technology (Fintech) on the future of predictive modelling. Fintech creates new applications for predictive modelling and therefore broadens the possibilities in the financial predictive modelling field. This changing landscape causes some challenges but also creates a wealth of opportunities. One way of exploiting these opportunities and managing the associated risks is via industry collaboration. Academics should join hands with industry to create industry-focused training and industry-focused research. In summary, this study made three novel contributions to the field of financial credit risk models. Firstly, it conducts an investigation and provides a comprehensive discussion on three factors that contribute to rapid changes in the credit risk predictive models’ landscape. Secondly, it presents a unique discussion of the challenges and opportunities arising from these factors. Lastly, it proposes an innovative solution, specifically collaboration between academic and industry partners, to effectively manage the challenges and take advantage of the opportunities for mutual benefits.

Suggested Citation

  • Tanja Verster & Erika Fourie, 2023. "The Changing Landscape of Financial Credit Risk Models," IJFS, MDPI, vol. 11(3), pages 1-15, August.
  • Handle: RePEc:gam:jijfss:v:11:y:2023:i:3:p:98-:d:1210595
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/11/3/98/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/11/3/98/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Wang & Kai Zong & Cuicui Luo, 2022. "Credit risk detection based on machine learning algorithms," International Journal of Financial Services Management, Inderscience Enterprises Ltd, vol. 11(3), pages 183-189.
    2. Rizwan, Muhammad Suhail & Ahmad, Ghufran & Ashraf, Dawood, 2020. "Systemic risk: The impact of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    3. Francesca Bell & Gary van Vuuren, 2022. "The impact of climate risk on corporate credit risk," Cogent Economics & Finance, Taylor & Francis Journals, vol. 10(1), pages 2148362-214, December.
    4. Majid Bazarbash, 2019. "FinTech in Financial Inclusion: Machine Learning Applications in Assessing Credit Risk," IMF Working Papers 2019/109, International Monetary Fund.
    5. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    6. Hodula, Martin, 2023. "Interest rates as a finance battleground? The rise of Fintech and big tech credit providers and bank interest margin," Finance Research Letters, Elsevier, vol. 53(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Partha Sengupta & Christopher H. Wheeler, 2024. "Credit card loss forecasting: Some lessons from COVID," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2448-2477, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    2. Nartey Menzo, Benjamin Prince & Mogre, Diana & Asuamah Yeboah, Samuel, 2024. "Beyond Income: The Complexities of Credit Risk in Developing Countries," MPRA Paper 122364, University Library of Munich, Germany, revised 20 Sep 2024.
    3. Marcus Buckmann & Andy Haldane & Anne-Caroline Hüser, 2021. "Comparing minds and machines: implications for financial stability," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 479-508.
    4. Sahab Zandi & Kamesh Korangi & Mar'ia 'Oskarsd'ottir & Christophe Mues & Cristi'an Bravo, 2024. "Attention-based Dynamic Multilayer Graph Neural Networks for Loan Default Prediction," Papers 2402.00299, arXiv.org, revised Jun 2024.
    5. Alfonso-Sánchez, Sherly & Solano, Jesús & Correa-Bahnsen, Alejandro & Sendova, Kristina P. & Bravo, Cristián, 2024. "Optimizing credit limit adjustments under adversarial goals using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 315(2), pages 802-817.
    6. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    7. Wosnitza, Jan Henrik, 2022. "Calibration alternatives to logistic regression and their potential for transferring the dispersion of discriminatory power into uncertainties of probabilities of default," Discussion Papers 04/2022, Deutsche Bundesbank.
    8. Davidescu Adriana AnaMaria & Agafiței Marina-Diana & Strat Vasile Alecsandru & Dima Alina Mihaela, 2024. "Mapping the Landscape: A Bibliometric Analysis of Rating Agencies in the Era of Artificial Intelligence and Machine Learning," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 67-85.
    9. Brada, Josef C. & Gajewski, Paweł & Kutan, Ali M., 2021. "Economic resiliency and recovery, lessons from the financial crisis for the COVID-19 pandemic: A regional perspective from Central and Eastern Europe," International Review of Financial Analysis, Elsevier, vol. 74(C).
    10. He, Ni & Yongqiao, Wang & Tao, Jiang & Zhaoyu, Chen, 2022. "Self-Adaptive bagging approach to credit rating," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    11. Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020. "Credit scoring by incorporating dynamic networked information," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
    12. Davide Nicola Continanza & Andrea del Monaco & Marco di Lucido & Daniele Figoli & Pasquale Maddaloni & Filippo Quarta & Giuseppe Turturiello, 2023. "Stacking machine learning models for anomaly detection: comparing AnaCredit to other banking data sets," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59, Bank for International Settlements.
    13. Lismont, Jasmien & Vanthienen, Jan & Baesens, Bart & Lemahieu, Wilfried, 2017. "Defining analytics maturity indicators: A survey approach," International Journal of Information Management, Elsevier, vol. 37(3), pages 114-124.
    14. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    15. Fiorella De Fiore & Leonardo Gambacorta & Cristina Manea, 2023. "Big techs and the credit channel of monetary policy," BIS Working Papers 1088, Bank for International Settlements.
    16. Lu, Ran & Xu, Wen & Zeng, Hongjun & Zhou, Xiangjing, 2023. "Volatility connectedness among the Indian equity and major commodity markets under the COVID-19 scenario," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1465-1481.
    17. Rasa Kanapickiene & Renatas Spicas, 2019. "Credit Risk Assessment Model for Small and Micro-Enterprises: The Case of Lithuania," Risks, MDPI, vol. 7(2), pages 1-23, June.
    18. Addi, Abdelhamid & Bouoiyour, Jamal, 2023. "Interconnectedness and extreme risk: Evidence from dual banking systems," Economic Modelling, Elsevier, vol. 120(C).
    19. Guo, Wen-Chung & Tseng, Ping-Lun, 2023. "COVID-19, bank risk, and capital regulation: The aggregate shock and social distancing," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 155-173.
    20. Lööf, Hans & Sahamkhadam, Maziar & Stephan, Andreas, 2022. "Is Corporate Social Responsibility investing a free lunch? The relationship between ESG, tail risk, and upside potential of stocks before and during the COVID-19 crisis," Finance Research Letters, Elsevier, vol. 46(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:11:y:2023:i:3:p:98-:d:1210595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.