Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7622-d679496.html
   My bibliography  Save this article

Monetising Air Pollution Benefits of Clean Energy Requires Locally Specific Information

Author

Listed:
  • Mandana Mazaheri

    (New South Wales Department of Planning, Industry and Environment, Parramatta 2124, Australia)

  • Yvonne Scorgie

    (New South Wales Department of Planning, Industry and Environment, Parramatta 2124, Australia)

  • Richard A. Broome

    (New South Wales Ministry of Health, Health Protection NSW, Sydney 2060, Australia)

  • Geoffrey G. Morgan

    (University Centre for Rural Health, School of Public Health, University of Sydney, Lismore 2480, Australia)

  • Bin Jalaludin

    (School of Public Health and Community Medicine, University of New South Wales, Sydney 2006, Australia)

  • Matthew L. Riley

    (New South Wales Department of Planning, Industry and Environment, Parramatta 2124, Australia)

Abstract
Meeting the Paris Agreement on climate change requires substantial investments in low-emissions energy and significant improvements in end-use energy efficiency. These measures can also deliver improved air quality and there is broad recognition of the health benefits of decarbonising energy. Monetising these health benefits is an important part of a robust assessment of the costs and benefits of renewable energy and energy efficiency programs (clean energy programs (CEP)) and a variety of methods have been used to estimate health benefits at national, regional, continental and global scales. Approaches, such as unit damage cost estimates and impact pathways, differ in complexity and spatial coverage and can deliver different estimates for air pollution costs/benefits. To date, the monetised health benefits of CEP in Australia have applied international and global estimates that can range from 2–229USD/tCO2 (USD 2016). Here, we calculate the current health damage costs of coal-fired power in New South Wales (NSW), Australia’s most populous state, and the health benefits of CEP. Focusing on PM2.5 pollution, we estimate the current health impacts of coal-fired power at 3.20USD/MWh, approximately 10% of the generation costs, and much lower than previous estimates. We demonstrate the need for locally specific assessment of the air pollution benefits of CEP and illustrate that without locally specific information, the relative costs/benefits of CEP may be significantly over- or understated. We estimate that, for NSW, the health benefits from CEP are 1.80USD/MWh and that the current air pollution health costs of coal-fired power in NSW represent a significant unpriced externality.

Suggested Citation

  • Mandana Mazaheri & Yvonne Scorgie & Richard A. Broome & Geoffrey G. Morgan & Bin Jalaludin & Matthew L. Riley, 2021. "Monetising Air Pollution Benefits of Clean Energy Requires Locally Specific Information," Energies, MDPI, vol. 14(22), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7622-:d:679496
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7622/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7622/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph E. Aldy & W. Kip Viscusi, 2007. "Age Differences in the Value of Statistical Life: Revealed Preference Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 1(2), pages 241-260, Summer.
    2. Ürge-Vorsatz, Diana & Cabeza, Luisa F. & Serrano, Susana & Barreneche, Camila & Petrichenko, Ksenia, 2015. "Heating and cooling energy trends and drivers in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 85-98.
    3. Garnaut,Ross, 2008. "The Garnaut Climate Change Review," Cambridge Books, Cambridge University Press, number 9780521744447.
    4. Lawrence H. Goulder & Roberton C. Williams, 2012. "The Choice Of Discount Rate For Climate Change Policy Evaluation," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-18.
    5. Geller, Howard & Harrington, Philip & Rosenfeld, Arthur H. & Tanishima, Satoshi & Unander, Fridtjof, 2006. "Polices for increasing energy efficiency: Thirty years of experience in OECD countries," Energy Policy, Elsevier, vol. 34(5), pages 556-573, March.
    6. J. Jason West & Steven J. Smith & Raquel A. Silva & Vaishali Naik & Yuqiang Zhang & Zachariah Adelman & Meridith M. Fry & Susan Anenberg & Larry W. Horowitz & Jean-Francois Lamarque, 2013. "Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health," Nature Climate Change, Nature, vol. 3(10), pages 885-889, October.
    7. Joeri Rogelj & Gunnar Luderer & Robert C. Pietzcker & Elmar Kriegler & Michiel Schaeffer & Volker Krey & Keywan Riahi, 2015. "Energy system transformations for limiting end-of-century warming to below 1.5 °C," Nature Climate Change, Nature, vol. 5(6), pages 519-527, June.
    8. Meg Perry-Duxbury & Job Exel & Werner Brouwer, 2019. "How to value safety in economic evaluations in health care? A review of applications in different sectors," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(7), pages 1041-1061, September.
    9. Eoin Ó Broin & Jonas Nässén & Filip Johnsson, 2015. "Energy efficiency policies for space heating in EU countries: A panel data analysis for the period 1990–2010," Post-Print hal-01205485, HAL.
    10. Ó Broin, Eoin & Nässén, Jonas & Johnsson, Filip, 2015. "Energy efficiency policies for space heating in EU countries: A panel data analysis for the period 1990–2010," Applied Energy, Elsevier, vol. 150(C), pages 211-223.
    11. Andy Haines & Markus Amann & Nathan Borgford-Parnell & Sunday Leonard & Johan Kuylenstierna & Drew Shindell, 2017. "Short-lived climate pollutant mitigation and the Sustainable Development Goals," Nature Climate Change, Nature, vol. 7(12), pages 863-869, December.
    12. Fais, Birgit & Sabio, Nagore & Strachan, Neil, 2016. "The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets," Applied Energy, Elsevier, vol. 162(C), pages 699-712.
    13. Stefan Pauliuk & Anders Arvesen & Konstantin Stadler & Edgar G. Hertwich, 2017. "Industrial ecology in integrated assessment models," Nature Climate Change, Nature, vol. 7(1), pages 13-20, January.
    14. Arnulf Grubler & Charlie Wilson & Nuno Bento & Benigna Boza-Kiss & Volker Krey & David L. McCollum & Narasimha D. Rao & Keywan Riahi & Joeri Rogelj & Simon Stercke & Jonathan Cullen & Stefan Frank & O, 2018. "A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies," Nature Energy, Nature, vol. 3(6), pages 515-527, June.
    15. Jonathan J. Buonocore & Patrick Luckow & Gregory Norris & John D. Spengler & Bruce Biewald & Jeremy Fisher & Jonathan I. Levy, 2016. "Health and climate benefits of different energy-efficiency and renewable energy choices," Nature Climate Change, Nature, vol. 6(1), pages 100-105, January.
    16. Delucchi, Mark & Murphy, James & McCubbin, Donald, 2002. "The Health and Visibility Cost of Air Pollution: A Comparison of Estimation Methods," Institute of Transportation Studies, Working Paper Series qt03s2x9xb, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McAndrew, Ryan & Mulcahy, Rory & Gordon, Ross & Russell-Bennett, Rebekah, 2021. "Household energy efficiency interventions: A systematic literature review," Energy Policy, Elsevier, vol. 150(C).
    2. Sofia Tsemekidi Tzeiranaki & Paolo Bertoldi & Francesca Diluiso & Luca Castellazzi & Marina Economidou & Nicola Labanca & Tiago Ribeiro Serrenho & Paolo Zangheri, 2019. "Analysis of the EU Residential Energy Consumption: Trends and Determinants," Energies, MDPI, vol. 12(6), pages 1-27, March.
    3. Koengkan, Matheus & Fuinhas, José Alberto & Osmani, Fariba & Kazemzadeh, Emad & Auza, Anna & Alavijeh, Nooshin Karimi & Teixeira, Mônica, 2022. "Do financial and fiscal incentive policies increase the energy efficiency ratings in residential properties? A piece of empirical evidence from Portugal," Energy, Elsevier, vol. 241(C).
    4. Nelson, Tim & Pascoe, Owen & Calais, Prabpreet & Mitchell, Lily & McNeill, Judith, 2019. "Efficient integration of climate and energy policy in Australia’s National Electricity Market," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 178-193.
    5. Paul Wolfram & Stephanie Weber & Kenneth Gillingham & Edgar G. Hertwich, 2021. "Pricing indirect emissions accelerates low—carbon transition of US light vehicle sector," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Adrian Amelung, 2016. "Das "Paris-Agreement": Durchbruch der Top-Down-Klimaschutzverhandlungen im Kreise der Vereinten Nationen," Otto-Wolff-Institut Discussion Paper Series 03/2016, Otto-Wolff-Institut für Wirtschaftsordnung, Köln, Deutschland.
    7. Giraudet, Louis-Gaëtan & Bourgeois, Cyril & Quirion, Philippe, 2021. "Policies for low-carbon and affordable home heating: A French outlook," Energy Policy, Elsevier, vol. 151(C).
    8. Runst, Petrik & Thonipara, Anita, 2020. "Dosis facit effectum why the size of the carbon tax matters: Evidence from the Swedish residential sector," Energy Economics, Elsevier, vol. 91(C).
    9. Hollands, A.F. & Daly, H., 2023. "Modelling the integrated achievement of clean cooking access and climate mitigation goals: An energy systems optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    11. Matheus Koengkan & José Alberto Fuinhas & Magdalena Radulescu & Emad Kazemzadeh & Nooshin Karimi Alavijeh & Renato Santiago & Mônica Teixeira, 2023. "Assessing the Role of Financial Incentives in Promoting Eco-Friendly Houses in the Lisbon Metropolitan Area—Portugal," Energies, MDPI, vol. 16(4), pages 1-20, February.
    12. Bertoldi, Paolo & Mosconi, Rocco, 2020. "Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States)," Energy Policy, Elsevier, vol. 139(C).
    13. Park, Somin & Shim, Jisoo & Song, Doosam, 2021. "Issues in calculation of balance-point temperatures for heating degree-days for the development of building-energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Berardi, Umberto, 2017. "A cross-country comparison of the building energy consumptions and their trends," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 230-241.
    15. Cao, Libin & Tang, Yiqi & Cai, Bofeng & Wu, Pengcheng & Zhang, Yansen & Zhang, Fengxue & Xin, Bo & Lv, Chen & Chen, Kai & Fang, Kai, 2021. "Was it better or worse? Simulating the environmental and health impacts of emissions trading scheme in Hubei province, China," Energy, Elsevier, vol. 217(C).
    16. Yingying Lu & David I. Stern, 2016. "Substitutability and the Cost of Climate Mitigation Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(1), pages 81-107, May.
    17. Moore, Trivess & Berry, Stephen & Ambrose, Michael, 2019. "Aiming for mediocrity: The case of australian housing thermal performance," Energy Policy, Elsevier, vol. 132(C), pages 602-610.
    18. Kennedy, Christopher, 2022. "Capital, energy and carbon in the United States economy," Applied Energy, Elsevier, vol. 314(C).
    19. Asaee, S. Rasoul & Sharafian, Amir & Herrera, Omar E. & Blomerus, Paul & Mérida, Walter, 2018. "Housing stock in cold-climate countries: Conversion challenges for net zero emission buildings," Applied Energy, Elsevier, vol. 217(C), pages 88-100.
    20. Gábor L. Szabó & Ferenc Kalmár, 2018. "Parametric Analysis of Buildings’ Heat Load Depending on Glazing—Hungarian Case Study," Energies, MDPI, vol. 11(12), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7622-:d:679496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.