Nothing Special   »   [go: up one dir, main page]

Skip to content

3dlg-hcvc/mopa

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

85 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MOPA: Modular Object Navigation with PointGoal Agents

This is an implementation of our paper MOPA: Modular Object Navigation with PointGoal Agents. webpage

Architecture Overview

Installing dependencies:

This code is tested on python 3.8.13, pytorch v1.11.0 and CUDA V11.2. Install pytorch from https://pytorch.org/ according to your machine configuration.

conda create -n mon python=3.8 cmake=3.14.0
conda activate mon

This code uses forked versions of habitat-sim and habitat-lab.

Installing habitat-sim:

For headless machines with GPU
git clone git@github.com:sonia-raychaudhuri/habitat-sim.git
cd habitat-sim
python -m pip install -r requirements.txt
python setup.py build_ext --parallel 4 install --headless --bullet 
For machines with attached display
git clone git@github.com:sonia-raychaudhuri/habitat-sim.git
cd habitat-sim
python -m pip install -r requirements.txt
python setup.py build_ext --parallel 4 install --bullet 

Installing habitat-lab:

git clone git@github.com:sonia-raychaudhuri/habitat-lab.git
cd habitat-lab
pip install -e .

Setup

Clone the repository and install the requirements:

git clone git@github.com:3dlg-hcvc/mopa.git
cd mopa
python -m pip install -r requirements.txt

Downloading data and checkpoints

Download HM3D scenes here and place the data in: mopa/data/scene_datasets/hm3d.

Download objects:

wget -O multion_cyl_objects.zip "https://aspis.cmpt.sfu.ca/projects/multion-challenge/2022/challenge/dataset/multion_cyl_objects"
wget -O multion_real_objects.zip "https://aspis.cmpt.sfu.ca/projects/multion-challenge/2022/challenge/dataset/multion_real_objects"

Extract them under mopa/data.

Download the dataset.

# Replace {n} with 1, 3, 5 for 1ON, 3ON & 5ON respectively; Replace {obj_type} with CYL or REAL for Cylinder and Real/Natural objects respectively; Replace {split} with minival, val or train for different data splits.

wget -O {n}_ON_{obj_type}_{split}.zip "https://aspis.cmpt.sfu.ca/projects/multion-challenge/2022/challenge/dataset/{n}_ON_{obj_type}_{split}"

Extract them and place them inside mopa/data in the following format:

mopa/
  data/
    scene_datasets/
      hm3d/
          ...
    multion_cyl_objects/
        ...
    multion_real_objects/
        ...
    5_ON_CYL/
        train/
            content/
                ...
            train.json.gz
        minival/
            content/
                ...
            minival.json.gz
        val/
            content/
                ...
            val.json.gz
    5_ON_REAL/
        train/
            content/
                ...
            train.json.gz
        minival/
            content/
                ...
            minival.json.gz
        val/
            content/
                ...
            val.json.gz

Usage

Pre-trained models

Download the pretrained PointNav model, trained on HM3D here and update the path here and here.

Download the following checkpoints for Object Detection and place under mopa/data/object_detection_models:

wget "https://aspis.cmpt.sfu.ca/projects/multion/mopa/pretrained_models/obj_det_real.zip"
wget "https://aspis.cmpt.sfu.ca/projects/multion/mopa/pretrained_models/obj_det_cylinder.zip"
  wget "https://aspis.cmpt.sfu.ca/projects/multion/mopa/pretrained_models/knn_colors.zip"

Evaluation

Evaluation will run on the 3_ON val set by default.

# For evaluating with OraSem agent on 3ON cylinders dataset
python run.py  --exp-config baselines/config/pointnav/hier_w_proj_ora_sem_map.yaml --run-type eval

# For evaluating with OraSem agent on 3ON real/natural objects dataset
python run.py  --exp-config baselines/config/pointnav/hier_w_proj_ora_sem_map_real.yaml --run-type eval

# For evaluating with PredSem agent on 3ON cylinders dataset
python run.py  --exp-config baselines/config/pointnav/hier_w_proj_pred_sem_map.yaml --run-type eval

# For evaluating with PredSem agent on 3ON real/natural objects dataset
python run.py  --exp-config baselines/config/pointnav/hier_w_proj_pred_sem_map_real.yaml --run-type eval

Citation

Sonia Raychaudhuri, Tommaso Campari, Unnat Jain, Manolis Savva, Angel X. Chang, 2023. MOPA: Modular Object Navigation with PointGoal Agents. PDF

Bibtex

  @misc{raychaudhuri2023mopa,
      title={MOPA: Modular Object Navigation with PointGoal Agents}, 
      author={Sonia Raychaudhuri and Tommaso Campari and Unnat Jain and Manolis Savva and Angel X. Chang},
      year={2023},
      eprint={2304.03696},
      archivePrefix={arXiv},
      primaryClass={cs.RO}
}

Acknowledgements

The members at SFU were supported by Canada CIFAR AI Chair grant, Canada Research Chair grant, NSERC Discovery Grant and a research grant by Facebook AI Research. Experiments at SFU were enabled by support from WestGrid and Compute Canada. This repository is built upon Habitat Lab and multiON.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages