You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Multi-language suite for high-performance solvers of differential equations and scientific machine learning (SciML) components. Ordinary differential equations (ODEs), stochastic differential equations (SDEs), delay differential equations (DDEs), differential-algebraic equations (DAEs), and more in Julia.
An acausal modeling framework for automatically parallelized scientific machine learning (SciML) in Julia. A computer algebra system for integrated symbolics for physics-informed machine learning and automated transformations of differential equations
Delay differential equation (DDE) solvers in Julia for the SciML scientific machine learning ecosystem. Covers neutral and retarded delay differential equations, and differential-algebraic equations.
Neural Laplace Control for Continuous-time Delayed Systems - an offline RL method combining Neural Laplace dynamics model and MPC planner to achieve near-expert policy performance in environments with irregular time intervals and an unknown constant delay.