Highlights
- Pro
Stars
Materials for my scikit-learn tutorial
Analyze spectroscopy data using tidy-data philosophy
Explaining the output of machine learning models with more accurately estimated Shapley values
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.
Source for book "Feature Engineering A-Z"
Lesson series for the Openscapes Champions program
Source and slides for "Why you should be using tidymodels" at UW-Madison
Tutorial on creating effective data plots for the SSA Statistical Computing and Visualisation section.
R functions for the chemometric analysis of spectra
Latex code for making neural networks diagrams
đź’Š Molecular informatics toolkit with integration of bioinformatics and cheminformatics tools for drug discovery
❗ This is a read-only mirror of the CRAN R package repository. IADT — Interaction Difference Test for Prediction Models
Lightning ⚡️ fast forecasting with statistical and econometric models.