Deprecated: Function get_magic_quotes_gpc() is deprecated in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 99

Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 619

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1169

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176
E60D tuni56 (Rocio.data) · GitHub
Nothing Special   »   [go: up one dir, main page]

Skip to content
View tuni56's full-sized avatar
🤖
Developing new things
🤖
Developing new things

Block or report tuni56

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
tuni56/README.md
Blue Modern Photo Technology YouTube Banner

👋 Hi, I'm Rocío — AWS-Certified Data Scientist helping companies save millions with ML + Cloud Analytics 🚀 Building @rocio.data | 📺 Launching AWS Mondays on YouTube | 🎧 Data Conversations Podcast 🌎 Argentina → Global | 💼 Open to Remote & Strategic Consulting | ☁️ AWS Solutions Architect Professional

🧠 About Me

I'm building rocio.data, where I share practical AWS + Data Science knowledge through real-world content and help professionals make successful career transitions.

My journey: Industrial Engineer → 6 years in traditional engineering → Complete career pivot to Data Science → Now helping others make the same successful transition.

What makes me different: I don't just teach theory. Every tutorial, template, and framework I share comes from production systems that have saved companies millions. My AWS data pipelines have processed billions of records, and my ML models have prevented millions in churn.

My mission: Make cloud analytics accessible to everyone, regardless of technical background.

What I'm building:

  • 📺 YouTube: AWS Mondays series (launching soon - subscribe for early access!)
  • 🎧 Podcast: Data Conversations - weekly deep dives into real data science
  • 💼 LinkedIn: Daily insights through my newsletters "Data: a game changer" & "Pulso pyme"
  • 🎓 Community: Growing network of data professionals learning together

🔧 Tech Stack (Production-Tested)

Cloud & MLOps (Primary Focus)

  • AWS: SageMaker, EMR, S3, Lambda, Glue, Redshift, QuickSight, Step Functions
  • MLOps: Docker, CI/CD, Model Deployment, Monitoring, A/B Testing
  • Certifications: AWS Solutions Architect Professional, AWS ML Specialty

Data Science & ML

  • Languages: Python, SQL, PySpark
  • ML Libraries: scikit-learn, TensorFlow, PyTorch, XGBoost, BERT
  • Specialties: Time Series Forecasting, NLP, Computer Vision, Statistical Analysis

Data Engineering

  • Pipeline Tools: Apache Spark, Airflow, dbt, AWS Glue
  • Databases: PostgreSQL, Redshift, DynamoDB, S3 Data Lakes
  • Monitoring: CloudWatch, Elasticsearch, Kibana, DataDog

💼 What I Can Help You With

Build scalable AWS data pipelines that handle millions of records
Deploy ML models to production with real-time inference capabilities
Automate manual processes saving hundreds of hours monthly
Design data architectures for startups to enterprise scale
Optimize cloud costs typically reducing bills by 30-50%
Train technical teams on modern data engineering practices

📂 Selected Projects

📉 Customer Churn Prediction with SageMaker

💰 Business Impact: $2M annual savings | 🔧 Production System

The Challenge: Telecommunications company losing 15% of customers monthly
My Solution: End-to-end ML pipeline with real-time prediction API
Key Results:

  • 🎯 92% prediction accuracy
  • 📈 24% churn reduction achieved
  • ⚡ Real-time inference <200ms response time

Tech Stack: AWS SageMaker, XGBoost, Lambda, API Gateway, CloudWatch
🔗 https://github.com/tuni56/customer-churn-prediction


🏗️ Data Lake Analytics Pipeline

💰 Business Impact: 70% faster processing | ⚙️ Enterprise Scale

The Challenge: Inefficient processing of large-scale transaction data
My Solution: Scalable ETL pipeline with automated data quality checks
Key Results:

  • ⚡ 70% reduction in processing time
  • 📊 Real-time analytics capabilities enabled
  • 🔧 Zero-maintenance automated pipeline

Tech Stack: AWS S3, Glue, Redshift, Apache Spark, Lambda
🔗 https://github.com/tuni56/datalake-analytics-pipeline


📊 Sales Analytics Dashboard

💰 Business Impact: 50% faster decisions | 📈 Real-time Insights

The Challenge: No real-time visibility into sales performance
My Solution: Interactive dashboard with drill-down capabilities and automated refresh
Key Results:

  • 🚀 50% improvement in decision-making speed
  • 📈 Increased sales team efficiency
  • 🔄 Automated daily data refresh

Tech Stack: Amazon QuickSight, Athena, S3, Python, Pandas
🔗 https://github.com/tuni56/sales-analytics-dashboard


📈 Demand Forecasting System

💰 Business Impact: 30% inventory cost reduction | 🤖 ML in Production

The Challenge: Suboptimal inventory levels causing stockouts and excess
My Solution: Prophet forecasting with automated retraining and real-time predictions
Key Results:

  • 💰 30% reduction in inventory costs
  • 🎯 40% improvement in forecast accuracy
  • 🤖 Fully automated prediction pipeline

Tech Stack: Python, Prophet, AWS Lambda, DynamoDB, CloudWatch
🔗 https://github.com/tuni56/demand-forecasting-system


🛠️ Log Analytics Platform

💰 Business Impact: 60% faster incident resolution | ⚡ Real-time Processing

The Challenge: Difficulty analyzing massive log datasets for operational insights
My Solution: Real-time log processing with advanced search and alerting
Key Results:

  • ⚡ 60% reduction in Mean Time to Recovery (MTTR)
  • 🚨 Proactive issue detection and alerting
  • 📊 Comprehensive operational dashboards

Tech Stack: AWS EMR, Apache Spark, Elasticsearch, Kibana, S3
🔗 GitHub Repo


🤖 MLOps Pipeline for Sentiment Analysis

💰 Business Impact: 80% faster deployments | 🚀 End-to-end Automation

The Challenge: Manual and error-prone ML deployment processes
My Solution: End-to-end automated ML pipeline with continuous training and deployment
Key Results:

  • ⚡ 80% reduction in model deployment time
  • 📈 15% improvement in model accuracy
  • 🔄 Continuous integration and deployment for ML models

Tech Stack: AWS SageMaker, Step Functions, CodePipeline, Docker, BERT
🔗 GitHub Repo | 🌐 Live Demo

📺 Content & Resources

🎥 YouTube (Coming Soon):

  • 📺 AWS Mondays Channel - Subscribe for launch notification!
  • 🎬 Upcoming: AWS Data Pipeline in 20 Minutes
  • 🎬 Upcoming: ML Model to Production: Complete Guide
  • 🎬 Upcoming: Why 80% of Data Science Projects Fail

📰 LinkedIn Newsletters:

🎧 Podcast:

  • 🎙️ Data Conversations - Deep dives into real data science challenges (launching soon)

💡 Free Resources (Coming Soon):

  • 🆓 Data Science Career Roadmap 2024
  • 📊 AWS Cost Optimization Calculator
  • 💰 Salary Negotiation Scripts for Data Roles
  • 🔧 Production-Ready Code Templates

🌱 What I'm Building

Content Strategy:

  • 📺 YouTube: Weekly AWS tutorials focusing on practical, production-ready solutions
  • 🎧 Podcast: In-depth conversations about real data science challenges and solutions
  • 💼 LinkedIn: Daily insights through two specialized newsletters
  • 📧 Community: Building a network of data professionals learning together

Open Source Projects:

  • 🔧 Creating production-ready templates for common data engineering tasks
  • 📚 Documenting real-world ML project lifecycles
  • 🎓 Developing career resources for aspiring data scientists

🤝 Let's Connect & Collaborate

For Learning & Community:

For Business & Consulting:

🚀 Currently Available For

Strategic Data Consulting - AWS architecture, ML strategy, team training
Freelance Projects - End-to-end data solutions, pipeline development
Content Collaborations - Technical writing, guest appearances
Mentorship - Helping professionals transition into data science careers


"Making cloud analytics accessible to everyone, one project at a time" 🚀

#DataScience #AWSCloud #MachineLearning #MLOps #DataEngineering #Python #CloudFirst #WomenInTech #ContentCreator #CareerChange

Pinned Loading

  1. customer-churn-prediction customer-churn-prediction Public

    customer churn prediction using AWS SageMaker

  2. retail_transaction_analysis retail_transaction_analysis Public

    Ever wondered why some products are frequently bought together? Using the Apriori algorithm, I analyzed real-world retail transactions to uncover hidden shopping patterns and enhance product recomm…

    Python 1

  3. customer-segmentation-kmeans customer-segmentation-kmeans Public

    Using kmeans ML algorithm to segmentate customers in order to obtain useful insights

    Python 1

  4. demand-forecasting-system demand-forecasting-system Public

    Build predictive analytics solution for inventory management.

    Python

  5. datalake-analytics-pipeline datalake-analytics-pipeline Public

    Python

  6. sales-analytics-dashboard sales-analytics-dashboard Public

    Sales analytics dashboard using python libraries

    Python 1

0