Nothing Special   »   [go: up one dir, main page]

Skip to content

gvegayon/parallel

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

parallel

PARALLEL: Stata module for parallel computing

Parallel lets you run Stata faster, sometimes faster than MP itself. By organizing your job in several Stata instances, parallel allows you to work with out-of-the-box parallel computing. Using the the parallel prefix, you can get faster simulations, bootstrapping, reshaping big data, etc. without having to know a thing about parallel computing. With no need of having Stata/MP installed on your computer, parallel has showed to dramatically speedup computations up to two, four, or more times depending on how many processors your computer has.

See the HTML version of the program help file for more info. Other resources include the Stata 2017 conference presentation and the SSC page at Boston College (though the SSC version is a bit out-of-date, see below).

  1. Installation
  2. Minimal examples
  3. Authors

Citation

When using parallel, please include the following:

Vega Yon GG, Quistorff B. parallel: A command for parallel computing. The Stata Journal. 2019;19(3):667-684. doi:10.1177/1536867X19874242

Or use the following bibtex entry:

@article{
  VegaYon2019,
  author = {George G. {Vega Yon} and Brian Quistorff},
  title ={parallel: A command for parallel computing},
  journal = {The Stata Journal},
  volume = {19},
  number = {3},
  pages = {667-684},
  year = {2019},
  doi = {10.1177/1536867X19874242},
  URL = {https://doi.org/10.1177/1536867X19874242},
  eprint = {https://doi.org/10.1177/1536867X19874242}
}

Installation

If you have a previous installation of parallel installed from a different source (SSC, specific folder, specific URL) you should uninstall that first (ado uninstall parallel). Once installed it is suggested to restart Stata.

GitHub

Stable Version

Stata version >=13 can install the latest stable version using a GitHub URL,

net install parallel, from(https://raw.github.com/gvegayon/parallel/stable/) replace
mata mata mlib index

For Stata version <13, download as zip, unzip, and then replace the above URL with the full local path to the files.

Latest Version

To install the latest version (master branch):

net install parallel, from(https://raw.github.com/gvegayon/parallel/master/) replace
mata mata mlib index

To get a zip, go to https://raw.github.com/gvegayon/parallel/master/, click the "Clone or download" button and choose zip.

Older releases

Go to the Releases Page. You can use the release tag to in the URL (e.g., https://raw.github.com/gvegayon/parallel/v1.15.8.19/). See also the associated zip download option.

SSC

An older version is available from the SSC. It does not have all the bug fixes so it is not recommended to install it. If it is required, however, use

ssc install parallel, replace
mata mata mlib index

Minimal examples

The following minimal examples have been written to introduce how to use the module. Please notice that the only examples actually designed to show potential speed gains are parfor and bootstrap.

The examples have been executed on a Dell Vostro 3300 notebook running Ubuntu 14.04 with an Intel Core i5 CPU M 560 (2 physical cores) with 8Gb of RAM, using Stata/IC 12.1 for Unix (Linux 64-bit x86-64).

For more examples and details please refer to the module's help file or the wiki Gallery page.

Simple parallelization of egen

When conducted over groups, parallelizing egen can be useful. In the following example we show how to use parallel with by: egen.

. parallel initialize 2, f
N Clusters: 2
Stata dir:  /usr/local/stata13/stata

. sysuse auto
(1978 Automobile Data)

. parallel, by(foreign): egen maxp = max(price)
-------------------------------------------------------------------------------
Parallel Computing with Stata
Clusters   : 2
pll_id     : m61jt2abc1
Running at : /home/vegayon/Dropbox/repos/parallel
Randtype   : datetime

Waiting for the clusters to finish...
cluster 0001 has exited without error...
cluster 0002 has exited without error...
-------------------------------------------------------------------------------
Enter -parallel printlog #- to checkout logfiles.
-------------------------------------------------------------------------------

. tab maxp

       maxp |      Freq.     Percent        Cum.
------------+-----------------------------------
      12990 |         22       29.73       29.73
      15906 |         52       70.27      100.00
------------+-----------------------------------
      Total |         74      100.00

Which is the ``parallel'' way to do:

. sysuse auto
(1978 Automobile Data)

. bysort foreign: egen maxp = max(price)

. tab maxp

       maxp |      Freq.     Percent        Cum.
------------+-----------------------------------
      12990 |         22       29.73       29.73
      15906 |         52       70.27      100.00
------------+-----------------------------------
      Total |         74      100.00

Bootstrapping

In this example we'll evaluate a regression model using bootstrapping which, together with simulations, is one of the best ways to use parallel

. sysuse auto, clear
(1978 Automobile Data)

. parallel initialize 4, f
N Clusters: 4
Stata dir:  /usr/local/stata13/stata

. timer on 1

. parallel bs, reps(5000): reg price c.weig##c.weigh foreign rep
-------------------------------------------------------------------------------
Parallel Computing with Stata
Clusters   : 4
pll_id     : m61jt2abc1
Running at : /home/vegayon/Dropbox/repos/parallel
Randtype   : datetime

Waiting for the clusters to finish...
cluster 0001 has exited without error...
cluster 0002 has exited without error...
cluster 0003 has exited without error...
cluster 0004 has exited without error...
-------------------------------------------------------------------------------
Enter -parallel printlog #- to checkout logfiles.
-------------------------------------------------------------------------------

parallel bootstrapping                          Number of obs      =        69
                                                Replications       =      5000

      command:  regress price c.weig##c.weigh foreign rep

------------------------------------------------------------------------------
             |   Observed   Bootstrap                         Normal-based
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      weight |  -4.317581   3.033419    -1.42   0.155    -10.26297    1.627811
             |
    c.weight#|
    c.weight |   .0012192   .0004827     2.53   0.012     .0002732    .0021653
             |
     foreign |   3155.969   890.4385     3.54   0.000     1410.742    4901.197
       rep78 |  -30.11387   327.7725    -0.09   0.927    -672.5361    612.3084
       _cons |   6415.187   5047.099     1.27   0.204    -3476.945    16307.32
------------------------------------------------------------------------------

. timer off 1

. timer list
   1:     10.59 /        1 =      10.5930
  97:      0.07 /        2 =       0.0340
  98:      0.00 /        1 =       0.0030
  99:     10.52 /        1 =      10.5190

Which is the ``parallel way'' to do:

. sysuse auto, clear
(1978 Automobile Data)

. timer on 2

. bs, reps(5000) nodots: reg price c.weig##c.weigh foreign rep

Linear regression                               Number of obs      =        69
                                                Replications       =      5000
                                                Wald chi2(4)       =     51.13
                                                Prob > chi2        =    0.0000
                                                R-squared          =    0.5622
                                                Adj R-squared      =    0.5348
                                                Root MSE           = 1986.4039

------------------------------------------------------------------------------
             |   Observed   Bootstrap                         Normal-based
       price |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      weight |  -4.317581   3.110807    -1.39   0.165    -10.41465    1.779489
             |
    c.weight#|
    c.weight |   .0012192   .0004951     2.46   0.014     .0002489    .0021896
             |
     foreign |   3155.969   863.9629     3.65   0.000     1462.633    4849.305
       rep78 |  -30.11387   323.6419    -0.09   0.926    -664.4404    604.2127
       _cons |   6415.187    5162.58     1.24   0.214    -3703.285    16533.66
------------------------------------------------------------------------------

. timer off 2

. timer list
   2:     17.78 /        1 =      17.7810

Simulation

From the simulate stata command:

. parallel initialize 2, f
N Clusters: 2
Stata dir:  /usr/local/stata13/stata

. program define lnsim, rclass
  1.   version 12.1
  2.   syntax [, obs(integer 1) mu(real 0) sigma(real 1) ]
  3.   drop _all
  4.   set obs `obs'
  5.   tempvar z
  6.   gen `z' = exp(rnormal(`mu',`sigma'))
  7.   summarize `z'
  8.   return scalar mean = r(mean)
  9.   return scalar Var  = r(Var)
 10. end

. parallel sim, expr(mean=r(mean) var=r(Var)) reps(10000): lnsim, obs(100)
Warning: No data loaded.
-------------------------------------------------------------------------------
> -
Exporting the following program(s): lnsim

lnsim, rclass:
  1.   version 12.1
  2.   syntax [, obs(integer 1) mu(real 0) sigma(real 1) ]
  3.   drop _all
  4.   set obs `obs'
  5.   tempvar z
  6.   gen `z' = exp(rnormal(`mu',`sigma'))
  7.   summarize `z'
  8.   return scalar mean = r(mean)
  9.   return scalar Var = r(Var)
-------------------------------------------------------------------------------
> -
-------------------------------------------------------------------------------
Parallel Computing with Stata
Clusters   : 2
pll_id     : 93mwp9vps1
Running at : /home/vegayon/Dropbox/repos/parallel
Randtype   : datetime

Waiting for the clusters to finish...
cluster 0001 has exited without error...
cluster 0002 has exited without error...
-------------------------------------------------------------------------------
Enter -parallel printlog #- to checkout logfiles.
-------------------------------------------------------------------------------

. 
. summ

    Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------
        mean |     10000    1.648843    .2165041   1.021977   2.907977
         var |     10000    4.650656    4.218584   .6159253   133.9232

which is the parallel way to do

. program define lnsim, rclass
  1.   version 12.1
  2.   syntax [, obs(integer 1) mu(real 0) sigma(real 1) ]
  3.   drop _all
  4.   set obs `obs'
  5.   tempvar z
  6.   gen `z' = exp(rnormal(`mu',`sigma'))
  7.   summarize `z'
  8.   return scalar mean = r(mean)
  9.   return scalar Var  = r(Var)
 10. end

. simulate mean=r(mean) var=r(Var), reps(10000) nodots: lnsim, obs(100)

      command:  lnsim, obs(100)
         mean:  r(mean)
          var:  r(V. 
. summ

    Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------
        mean |     10000    1.644006    .2133008   1.061809   2.991108
         var |     10000    4.568202    3.984818   .6348574    110.893

parfor

In this example we create a short program (parfor) which is intended to work as a parfor program, this is, looping through 1/N in a parallel fashion

. // Cleaning working space
. clear all

. timer clear

. 
. // Set up
. set seed 123

. local n = 5e6

. set obs `n'
obs was 0, now 5000000

. gen x = runiform()

. gen y_pll = .
(5000000 missing values generated)

. clonevar y_ser = y_pll
(5000000 missing values generated)

. 
. // Loop replacement function
. prog def parfor
  1.         args var
  2.         forval i=1/`=_N' {
  3.                 qui replace `var' = sqrt(x) in `i'
  4.         }
  5. end

. 
. // Running the algorithm in parallel fashion
. timer on 1

. parallel initialize 4, f
N Clusters: 4
Stata dir:  /usr/local/stata13/stata

. parallel, prog(parfor): parfor y_pll
-------------------------------------------------------------------------------
> -
Exporting the following program(s): parfor

parfor:
  1.         args var
  2.         forval i=1/`=_N' {
  3.                 qui replace `var' = sqrt(x) in `i'
  4.         }
-------------------------------------------------------------------------------
> -
-------------------------------------------------------------------------------
Parallel Computing with Stata
Clusters   : 4
pll_id     : wrusvgqb91
Running at : /home/vegayon/Dropbox/repos/parallel
Randtype   : datetime

Waiting for the clusters to finish...
cluster 0001 has exited without error...
cluster 0002 has exited without error...
cluster 0003 has exited without error...
cluster 0004 has exited without error...
-------------------------------------------------------------------------------
Enter -parallel printlog #- to checkout logfiles.
-------------------------------------------------------------------------------

. timer off 1

. 
. // Running the algorithm in a serial way
. timer on 2

. parfor y_ser

. timer off 2

. 
. // Is there any difference?
. list in 1/10

     +--------------------------------+
     |        x      y_pll      y_ser |
     |--------------------------------|
  1. |  .912044   .9550099   .9550099 |
  2. | .0075452   .0868631   .0868631 |
  3. | .2808588   .5299612   .5299612 |
  4. | .4602787   .6784384   .6784384 |
  5. | .5601059   .7484022   .7484022 |
     |--------------------------------|
  6. | .6731906    .820482    .820482 |
  7. | .6177611   .7859778   .7859778 |
  8. | .8656877   .9304234   .9304234 |
  9. | 9.57e-06   .0030943   .0030943 |
 10. | .4090917   .6396028   .6396028 |
     +--------------------------------+

. gen diff = y_pll != y_ser

. tab diff

       diff |      Freq.     Percent        Cum.
------------+-----------------------------------
          0 |  5,000,000      100.00      100.00
------------+-----------------------------------
      Total |  5,000,000      100.00

. 
. // Comparing time
. timer list
   1:      8.93 /        1 =       8.9260
   2:     16.06 /        1 =      16.0580
  97:      0.42 /        1 =       0.4240
  98:      0.32 /        1 =       0.3150
  99:      8.17 /        1 =       8.1740

. di "Parallel is `=round(r(t2)/r(t1),.1)' times faster"
Parallel is 1.8 times faster

. 

Building

If you need to use parallel on an older version of Stata than what we build here, you can build and install the package locally.

You will need to install Stata devtools to build the package and log2html to build the html version of the help.

Then you can go to ado/ and either do compile.do or do compile_and_install.do depending on whether you want to just build the package (.mlib) or also install. There are also several build build checks in the makefile that can easily be run from Linux.

The Windows plugins can be built using Visual Studio Community Edition (tested on 2019), which is freee, with the C++ build tools and Windows SDK.

Authors

George G. Vega [aut,cre] g.vegayon %at% gmail

Brian Quistorff [aut] brian-work %at% quistorff . com