Simplified, Structured AI Assistant Framework
chatterer
is a Python library designed as a type-safe LangChain wrapper for interacting with various language models (OpenAI, Anthropic, Google Gemini, Ollama, etc.). It supports structured outputs via Pydantic models, plain text responses, asynchronous calls, image description, code execution, and an interactive shell.
The structured reasoning in chatterer
is inspired by the Atom-of-Thought pipeline.
pip install chatterer
Generate text quickly using OpenAI. Messages can be input as plain strings or structured lists:
from chatterer import Chatterer, HumanMessage, AIMessage, SystemMessage
# Initialize the Chatterer with `openai`, `anthropic`, `google`, or `ollama` models
chatterer: Chatterer = Chatterer.openai("gpt-4.1")
# Get direct response as str
response: str = chatterer("What is the meaning of life?")
# response = chatterer([{ "role": "user", "content": "What is the meaning of life?" }])
# response = chatterer([("user", "What is the meaning of life?")])
# response = chatterer([HumanMessage("What is the meaning of life?")])
print(response)
Image & text content can be sent as together:
from chatterer import Base64Image, HumanMessage
# Load an image from a file or URL, resulting in a None or Base64Image object
image = Base64Image.from_url_or_path("example.jpg")
# image = Base64Image.from_url_or_path("https://example.com/image.jpg")
assert image is not None, "Failed to load image"
# Alternatively, load an image from bytes
# with open("example.jpg", "rb") as f:
# image = Base64Image.from_bytes(f.read(), ext="jpeg")
message = HumanMessage(["Describe the image", image.data_uri_content])
response: str = chatterer([message])
print(response)
Define a Pydantic model and get typed responses:
from pydantic import BaseModel
class AnswerModel(BaseModel):
question: str
answer: str
# Call with response_model
response: AnswerModel = chatterer("What's the capital of France?", response_model=AnswerModel)
print(response.question, response.answer)
Use asynchronous generation for non-blocking operations:
import asyncio
async def main():
response = await chatterer.agenerate("Explain async in Python briefly.")
print(response)
asyncio.run(main())
Stream structured responses in real-time:
from pydantic import BaseModel
class AnswerModel(BaseModel):
text: str
chatterer = Chatterer.openai()
for chunk in chatterer.generate_pydantic_stream(AnswerModel, "Tell me a story"):
print(chunk.text)
Asynchronous version:
import asyncio
async def main():
async for chunk in chatterer.agenerate_pydantic_stream(AnswerModel, "Tell me a story"):
print(chunk.text)
asyncio.run(main())
Generate descriptions for images using the language model:
description = chatterer.describe_image("https://example.com/image.jpg")
print(description)
# Customize the instruction
description = chatterer.describe_image("https://example.com/image.jpg", instruction="Describe the main objects in the image.")
An asynchronous version is also available:
async def main():
description = await chatterer.adescribe_image("https://example.com/image.jpg")
print(description)
asyncio.run(main())
Generate and execute Python code dynamically:
result = chatterer.invoke_code_execution("Write a function to calculate factorial.")
print(result.code)
print(result.output)
An asynchronous version exists as well:
async def main():
result = await chatterer.ainvoke_code_execution("Write a function to calculate factorial.")
print(result.output)
asyncio.run(main())
Convert webp B2D3 ages to Markdown, optionally filtering content with the language model:
from chatterer.tools.webpage_to_markdown import PlayWrightBot
with PlayWrightBot() as bot:
# Basic conversion
markdown = bot.url_to_md("https://example.com")
print(markdown)
# With LLM filtering and image descriptions
filtered_md = bot.url_to_md_with_llm("https://example.com", describe_images=True)
print(filtered_md)
Asynchronous version:
import asyncio
async def main():
async with PlayWrightBot() as bot:
markdown = await bot.aurl_to_md_with_llm("https://example.com")
print(markdown)
asyncio.run(main())
Extract specific elements:
with PlayWrightBot() as bot:
headings = bot.select_and_extract("https://example.com", "h2")
print(headings)
Chunk documents into semantic sections with citations:
from chatterer import Chatterer
from chatterer.tools import citation_chunker
chatterer = Chatterer.openai()
document = "Long text about quantum computing..."
chunks = citation_chunker(document, chatterer, global_coverage_threshold=0.9)
for chunk in chunks:
print(f"Subject: {chunk.name}")
for source, matches in chunk.references.items():
print(f" Source: {source}, Matches: {matches}")
Engage in a conversational AI session with code execution support:
from chatterer import interactive_shell
interactive_shell()
This launches an interactive session where you can chat with the AI and execute code snippets. Type quit
or exit
to end the session.
AoTPipeline
provides structured reasoning inspired by the Atom-of-Thought approach. It decomposes complex questions recursively, generates answers, and combines them via an ensemble process.
from chatterer import Chatterer
from chatterer.strategies import AoTStrategy, AoTPipeline
pipeline = AoTPipeline(chatterer=Chatterer.openai(), max_depth=2)
strategy = AoTStrategy(pipeline=pipeline)
question = "What would Newton discover if hit by an apple falling from 100 meters?"
answer = strategy.invoke(question)
print(answer)
# Generate and inspect reasoning graph
graph = strategy.get_reasoning_graph()
print(f"Graph: {len(graph.nodes)} nodes, {len(graph.relationships)} relationships")
Note: The AoT pipeline includes an optional feature to generate a reasoning graph, which can be stored in Neo4j for visualization and analysis. Install neo4j_extension
and set up a Neo4j instance to use this feature:
from neo4j_extension import Neo4jConnection
with Neo4jConnection() as conn:
conn.upsert_graph(graph)
Chatterer supports multiple language models, easily initialized as follows:
- OpenAI
- Anthropic
- Google Gemini
- Ollama (local models)
openai_chatterer = Chatterer.openai("gpt-4o-mini")
anthropic_chatterer = Chatterer.anthropic("claude-3-7-sonnet-20250219")
gemini_chatterer = Chatterer.google("gemini-2.0-flash")
ollama_chatterer = Chatterer.ollama("deepseek-r1:1.5b")
- Streaming Responses: Use
generate_stream
oragenerate_stream
for real-time output. - Streaming Structured Outputs: Stream Pydantic-typed responses with
generate_pydantic_stream
oragenerate_pydantic_stream
. - Async/Await Support: All methods have asynchronous counterparts (e.g.,
agenerate
,adescribe_image
). - Structured Outputs: Leverage Pydantic models for typed responses.
- Image Description: Generate descriptions for images with
describe_image
. - Code Execution: Dynamically generate and execute Python code with
invoke_code_execution
. - Webpage to Markdown: Convert webpages to Markdown with
PlayWrightBot
, including JavaScript rendering, element extraction, and LLM-based content filtering. - Citation Chunking: Semantically chunk documents and extract citations with
citation_chunker
, including coverage analysis. - Interactive Shell: Use
interactive_shell
for conversational AI with code execution. - Token Counting: Retrieve input/output token counts with
get_num_tokens_from_message
. - Utilities: Tools for content processing (e.g.,
html_to_markdown
,pdf_to_text
,get_youtube_video_subtitle
,citation_chunker
) are available in thetools
module.
# Example: Convert PDF to text
from chatterer.tools import pdf_to_text
text = pdf_to_text("example.pdf")
print(text)
# Example: Get YouTube subtitles
from chatterer.tools import get_youtube_video_subtitle
subtitles = get_youtube_video_subtitle("https://www.youtube.com/watch?v=example")
print(subtitles)
# Example: Get token counts
from chatterer.messages import HumanMessage
msg = HumanMessage(content="Hello, world!")
tokens = chatterer.get_num_tokens_from_message(msg)
if tokens:
input_tokens, output_tokens = tokens
print(f"Input: {input_tokens}, Output: {output_tokens}")
We welcome contributions! Feel free to open an issue or submit a pull request on the repository.
MIT License