A comprehensive, production-ready air quality prediction system that uses satellite imagery, IoT sensor data, and weather information to predict Air Quality Index (AQI) using advanced machine learning and deep learning models.
- Real-time Air Quality Data: OpenAQ API integration with global coverage
- Satellite Imagery Processing: NASA Earthdata Sentinel-2 imagery analysis
- Weather Data Fusion: OpenWeatherMap historical and forecast data
- IoT Sensor Integration: Support for custom sensor data sources
- Traffic & Urban Data: OpenStreetMap and traffic pattern analysis
- CNN-LSTM Hybrid: Deep learning model combining convolutional and recurrent networks
- Ensemble Methods: Random Forest, Gradient Boosting with hyperparameter optimization
- Time Series Models: LSTM, GRU for temporal pattern recognition
- Transfer Learning: Pre-trained models for satellite image analysis
- AutoML Integration: Automated model selection and hyperparameter tuning
- Interactive Dashboards: Plotly-based real-time monitoring dashboards
- Geographic Mapping: Folium-powered interactive maps with AQI overlays
- Time Series Analysis: Advanced trend analysis and seasonality detection
- Correlation Analysis: Multi-dimensional pollutant and weather correlations
- Predictive Analytics: Forecast models with confidence intervals
- Live Data Streaming: Real-time AQI monitoring and alerts
- Instant Predictions: Sub-second AQI predictions for any location
- API Endpoints: RESTful API for integration with other systems
- WebSocket Support: Real-time data streaming for web applications
- Mobile App Ready: JSON API responses for mobile development
- Modular Architecture: Plug-and-play component system
- Configurable Models: Easy model parameter tuning via config files
- Multi-City Support: Simultaneous monitoring of multiple cities
- Custom Feature Engineering: Extensible feature creation pipeline
- Plugin System: Support for custom data sources and models
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
โ Data Sources โ โ Preprocessing โ โ ML/DL Models โ
โ โ โ โ โ โ
โ โข OpenAQ API โโโโถโ โข Data Cleaning โโโโโถโ โข CNN-LSTM โ
โ โข Weather API โ โ โข Feature Eng. โ โ โข Random Forest โ
โ โข Satellite โ โ โข Normalization โ โ โข Gradient Boostโ
โ โข IoT Sensors โ โ โข Sequence Gen. โ โ โข SVR โ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
โ โ
โผ โผ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
โ Validation โ โ Visualization โ
โ โ โ โ
โ โข Cross-valid. โ โ โข Interactive โ
โ โข Hyperparam. โ โ โข Maps & Charts โ
โ โข Model Select. โ โ โข Dashboards โ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
- Coverage: Global, 10,000+ monitoring stations
- Pollutants: PM2.5, PM10, NO2, SO2, CO, O3, VOCs
- Update Frequency: Real-time to hourly
- Historical Data: Up to 5 years of historical measurements
- No API Key Required: Completely free access
- Parameters: Temperature, humidity, pressure, wind, precipitation
- Forecast: 5-day weather predictions
- Historical: Up to 5 years of historical weather data
- Free Tier: 1,000 API calls per day
- Global Coverage: 200,000+ cities worldwide
- Platforms: Sentinel-2, Landsat, MODIS
- Bands: RGB, NIR, SWIR for comprehensive analysis
- Resolution: 10m to 1km spatial resolution
- Temporal: Daily to monthly updates
- Completely Free: No usage limits
- Traffic Data: OpenStreetMap, Google Maps Traffic
- Urban Planning: Building density, green space coverage
- Demographic Data: Population density, industrial areas
- Economic Indicators: Industrial activity, transportation
-
CNN-LSTM Hybrid Architecture
- CNN Layers: Feature extraction from satellite imagery
- LSTM Layers: Temporal dependency modeling
- Attention Mechanisms: Focus on relevant time periods
- Multi-Head Architecture: Parallel processing of different data types
-
Advanced LSTM Variants
- Bidirectional LSTM: Forward and backward temporal analysis
- Stacked LSTM: Multiple LSTM layers for complex patterns
- Attention LSTM: Focus on important time steps
- GRU Networks: Gated Recurrent Units for efficiency
-
Satellite Image Processing
- Convolutional Neural Networks: Image feature extraction
- Transfer Learning: Pre-trained ResNet, VGG models
- Multi-Spectral Analysis: RGB + NIR band processing
- Object Detection: Urban area and pollution source identification
-
Ensemble Methods
- Random Forest: 100+ trees with feature importance
- Gradient Boosting: Adaptive boosting with regularization
- XGBoost: Extreme gradient boosting optimization
- LightGBM: Light gradient boosting for large datasets
-
Advanced Regression
- Support Vector Regression: Kernel-based non-linear regression
- Elastic Net: L1 + L2 regularization
- Polynomial Regression: Non-linear feature relationships
- Ridge/Lasso Regression: Regularized linear models
-
Time Series Models
- ARIMA: Auto-regressive integrated moving average
- Prophet: Facebook's forecasting tool
- Exponential Smoothing: Holt-Winters method
- VAR: Vector auto-regression for multiple variables
- Temporal Features: Hour, day, month, season, holidays
- Cyclical Encoding: Sin/cos transformations for time
- Lag Features: Previous hour/day AQI values
- Rolling Statistics: Moving averages, standard deviations
- Cross-Features: Interaction between weather and pollutants
- Outlier Detection: IQR, Z-score, Isolation Forest
- Missing Data Imputation: Multiple imputation strategies
- Data Validation: Schema validation and consistency checks
- Quality Metrics: Completeness, accuracy, timeliness scores
- Regression Metrics: RMSE, MAE, Rยฒ, MAPE
- Time Series Metrics: MASE, SMAPE, RMSSE
- Classification Metrics: Accuracy, Precision, Recall, F1
- Business Metrics: Prediction accuracy by AQI category
- Real-Time Monitoring: Live AQI updates with alerts
- Multi-City Comparison: Side-by-side city analysis
- Trend Analysis: Long-term AQI patterns and seasonality
- Forecast Visualization: Future AQI predictions with confidence
- Heat Maps: AQI concentration across geographic areas
- Choropleth Maps: Administrative boundary-based AQI display
- 3D Terrain Maps: Elevation-based AQI analysis
- Satellite Overlays: AQI data overlaid on satellite imagery
- Multi-Axis Plots: Multiple variables on different scales
- Box Plots: Distribution analysis by time periods
- Correlation Heatmaps: Multi-dimensional relationships
- Time Series Decomposition: Trend, seasonal, and residual components
# Model Configuration
MODEL_CONFIG = {
'cnn_lstm': {
'cnn_filters': [64, 128, 256],
'lstm_units': [128, 64],
'dropout_rate': 0.3,
'learning_rate': 0.001
},
'random_forest': {
'n_estimators': 200,
'max_depth': 15,
'min_samples_split': 5
}
}
# Data Collection Settings
DATA_CONFIG = {
'update_frequency': '1h',
'retention_period': '2y',
'quality_threshold': 0.8,
'backup_enabled': True
}
- Custom Data Sources: Easy integration of new APIs
- Custom Models: Add your own ML/DL algorithms
- Custom Visualizations: Extend the visualization system
- Custom Metrics: Define business-specific evaluation criteria
- Parallel Processing: Multi-threaded data collection
- Memory Management: Efficient data structures and caching
- Model Compression: Quantization and pruning for deployment
- Batch Processing: Efficient handling of large datasets
- Microservices Architecture: Modular, scalable design
- Database Integration: Support for PostgreSQL, MongoDB
- Cloud Deployment: AWS, Azure, GCP ready
- Container Support: Docker and Kubernetes deployment
# AQI Prediction API
POST /api/v1/predict
{
"city": "Delhi",
"coordinates": {"lat": 28.6139, "lon": 77.2090},
"model": "cnn_lstm",
"forecast_hours": 24
}
# Data Collection API
GET /api/v1/data/{city}
GET /api/v1/data/{city}/pollutants
GET /api/v1/data/{city}/weather
- Real-time Updates: Live AQI monitoring
- Alert Notifications: Instant pollution alerts
- Data Streaming: Continuous data flow
- Multi-client Support: Multiple dashboard connections
- CSV/Excel: Tabular data export
- JSON: API responses and data exchange
- GeoJSON: Geographic data for mapping
- PDF Reports: Automated report generation
- API Key Management: Secure storage of API credentials
- Data Encryption: At-rest and in-transit encryption
- Access Control: Role-based permissions
- Audit Logging: Complete activity tracking
- Data Anonymization: Remove personal identifiers
- Consent Management: GDPR compliance features
- Data Retention: Configurable data lifecycle
- Right to Deletion: Complete data removal capability
- API Reference: Complete endpoint documentation
- User Guides: Step-by-step tutorials
- Developer Docs: Code examples and best practices
- Video Tutorials: Visual learning resources
- GitHub Issues: Bug reports and feature requests
- Discord Community: Real-time support and discussion
- Documentation Wiki: Community-contributed guides
- Code Examples: Sample implementations and use cases
- Air Quality Monitoring: Real-time city-wide monitoring
- Policy Making: Data-driven environmental policies
- Public Health: Early warning systems for vulnerable populations
- Urban Planning: Pollution-aware city development
- Epidemiological Studies: Air quality and health correlations
- Clinical Research: Patient exposure assessment
- Public Health: Community health impact analysis
- Preventive Medicine: Risk assessment and recommendations
- Supply Chain: Route optimization for clean air
- Real Estate: Property value and air quality correlation
- Insurance: Risk assessment for health policies
- Tourism: Destination air quality information
- Personal Health: Daily air quality monitoring
- Outdoor Activities: Exercise timing optimization
- Travel Planning: Destination air quality research
- Home Automation: Smart ventilation systems
- AI-Powered Forecasting: Advanced prediction algorithms
- Mobile Applications: iOS and Android apps
- IoT Device Integration: Smart sensor networks
- Blockchain Integration: Decentralized data verification
- Edge Computing: Local processing capabilities
- 5G Integration: High-speed data transmission
- Augmented Reality: AR visualization of air quality
- Voice Assistants: Alexa and Google Home integration
- Quantum Computing: Quantum ML algorithms
- Satellite Constellation: Custom satellite network
- Global Coverage: 100% worldwide monitoring
- Predictive Maintenance: Equipment failure prediction
# Clone repository
git clone https://github.com/yourusername/aqi-predictor.git
cd aqi-predictor
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install development dependencies
pip install -r requirements-dev.txt
# Run tests
pytest tests/
# Code formatting
black .
isort .
- Fork the repository
- Create feature branch:
git checkout -b feature/amazing-feature
- Make changes and add tests
- Run test suite:
pytest tests/
- Submit pull request with detailed description
- Code Quality: Black, isort, flake8, mypy
- Testing: pytest, coverage, hypothesis
- CI/CD: GitHub Actions, automated testing
- Documentation: Sphinx, Read the Docs
- MIT License: Permissive open source license
- Commercial Use: Free for commercial applications
- Modification: Modify and distribute freely
- Attribution: Credit to original authors
- OpenAQ Data: CC0 public domain
- Weather Data: OpenWeatherMap terms of service
- Satellite Data: NASA open data policy
- User Data: GDPR compliant privacy protection
- Scikit-learn: Machine learning algorithms
- TensorFlow: Deep learning framework
- Pandas: Data manipulation and analysis
- Matplotlib/Seaborn: Data visualization
- Plotly: Interactive plotting library
- Folium: Python mapping library
- OpenAQ: Global air 7BCA quality data
- OpenWeatherMap: Weather data API
- NASA Earthdata: Satellite imagery
- OpenStreetMap: Geographic data
- Academic Papers: Methodology and algorithms
- Open Research: Collaborative development
- Peer Review: Quality assurance and validation
- Scientific Method: Evidence-based approach
The system uses environment variables for secure configuration:
-
Copy environment template:
cp config/.env.example config/.env
-
Configure your API keys in
config/.env
:# OpenWeatherMap API OPENWEATHER_API_KEY=your_api_key_here # NASA Earthdata NASA_USERNAME=your_username NASA_PASSWORD=your_password
-
Never commit
.env
files to version control
- โ API Key Protection: All secrets stored in environment variables
- โ Git Ignore: Sensitive files automatically excluded
- โ No Hardcoded Secrets: Configuration loaded securely
- โ
Security Validation: Run
python scripts/security_check.py
to verify
Ready to build your own air quality prediction system? Follow our quick start guide:
- Install Dependencies:
python scripts/install_packages.py
- Configure Environment: Copy
config/.env.example
toconfig/.env
and add your API keys - Run Demo:
python examples/simple_demo.py
- Full System:
python main.py
- Security Check:
python scripts/security_check.py
Remember: This system uses only free APIs and datasets. No payment required!
For questions, support, or contributions:
- ๐ง Email: support@aqipredictor.com
- ๐ฌ Discord: Join our community
- ๐ Issues: GitHub Issues
- ๐ Docs: Read the Docs
Star โญ this repository if you find it helpful!