Deprecated: Function get_magic_quotes_gpc() is deprecated in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 99

Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 619

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1169

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176
8000 JayDS22 (Jay Guwalani) Β· GitHub
Nothing Special   »   [go: up one dir, main page]

Skip to content
View JayDS22's full-sized avatar
🏠
Working from home
🏠
Working from home

Block or report JayDS22

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
JayDS22/README.md

Jay Guwalani | Senior AI Engineer/Architect & Full Stack Data Scientist

Typing SVG

Senior AI Engineer/Architect & Full Stack Data Scientist specializing in enterprise-scale distributed systems, real-time machine learning, and production generative AI architectures. Proven track record of designing fault-tolerant systems processing 24+ billion records with sub-200ms latency, delivering measurable business impact including $122.9M+ in cost savings through ML-driven optimization.

System Architecture

πŸ—οΈ Core Competencies

Distributed Systems & Data Engineering

  • Stream Processing: Apache Kafka, AWS Kinesis, Event-driven architectures at petabyte scale
  • Data Orchestration: Apache Airflow, Prefect, complex DAG management for ML pipelines
  • Storage Systems: Delta Lake, Apache Hudi, Snowflake, distributed data lake architectures
  • Compute Frameworks: Apache Spark, Databricks, auto-scaling cluster management

Statistical Science & Advanced Analytics

  • Bayesian Methods: MCMC sampling, Hierarchical modeling, Probabilistic programming with Stan/PyMC
  • Causal Inference: Propensity score matching, Instrumental variables, Difference-in-differences analysis
  • Survival Analysis: Cox regression, Kaplan-Meier estimation, Time-to-event modeling at scale
  • Time Series: ARIMA/GARCH models, State-space modeling, Multivariate forecasting frameworks

Data Science & Machine Learning Pipeline

  • Feature Engineering: Automated feature selection, Principal components, Statistical transformations
  • Model Development: Ensemble methods, Cross-validation strategies, Hyperparameter optimization
  • MLOps Integration: Model versioning, A/B testing frameworks, Continuous model monitoring
  • Deployment Architecture: Real-time inference APIs, Batch prediction pipelines, Edge deployment

Experimental Design & Business Intelligence

  • Randomized Experiments: Multi-armed bandits, Sequential testing, Adaptive experimental design
  • Observational Studies: Natural experiments, Regression discontinuity, Synthetic control methods
  • Executive Analytics: KPI frameworks, Performance dashboards, Strategic metric design
  • Data Visualization: Interactive dashboards, Statistical graphics, Executive reporting systems

Machine Learning Engineering & MLOps

  • Model Lifecycle: MLflow, Weights & Biases, automated A/B testing and model versioning
  • Production ML: Real-time inference, model serving at scale, latency optimization (<200ms)
  • Feature Engineering: Real-time feature stores, statistical transformations, ensemble methods
  • AutoML & Hyperparameter Optimization: Optuna, Ray Tune, distributed hyperparameter search

Generative AI & Advanced NLP

  • LLM Engineering: Fine-tuning, RLHF, prompt engineering, context optimization
  • RAG Architectures: Vector databases, embedding pipelines, semantic search at scale
  • Multi-Agent Systems: LangChain, LangGraph, complex reasoning workflows
  • Model Integration: OpenAI, Anthropic Claude, HuggingFace Transformers, custom model deployment

Cloud Architecture & DevOps

  • AWS Expertise: SageMaker, Bedrock, Lambda, Step Functions, EventBridge
  • Infrastructure as Code: Terraform, CloudFormation, automated provisioning
  • Containerization: Docker, Kubernetes, EKS, container orchestration at scale
  • CI/CD: Jenkins, GitHub Actions, automated testing and deployment pipelines

πŸ› οΈ Technology Stack

πŸ€– AI/ML & Generative AI

Python TensorFlow PyTorch Scikit-Learn OpenAI Hugging Face LangChain MLflow

πŸ“Š Big Data & Distributed Computing

Apache Spark Apache Kafka Apache Airflow Databricks Snowflake Delta Lake Apache Hudi Redis

☁️ Cloud Infrastructure & DevOps

AWS Azure GCP Kubernetes Docker Terraform Jenkins

πŸ’» Programming & Development

Python Java Scala R SQL JavaScript TypeScript

πŸ—„οΈ Databases & Storage

PostgreSQL MongoDB Neo4j Elasticsearch ClickHouse Apache Cassandra

πŸ“ˆ Analytics & Monitoring

Grafana Prometheus Power BI Tableau Apache Superset Jupyter Plotly Streamlit

πŸ”¬ Statistical & Research Tools

R SAS SPSS Stata MATLAB Stan PyMC Scipy


πŸ“Š Architecture & Performance Metrics

System Performance Business Impact Technical Leadership
24B+ records/day
processed at scale
$122.9M+ savings
through ML optimization
130+ professionals
mentored and trained
<200ms latency
for real-time inference
13.4K crashes prevented
across 300K vehicles
2 IEEE and IJAET publications
in ML research
99% uptime
across distributed systems
74.4% cost reduction
in infrastructure spend
Senior AI Engineer
for enterprise AI

πŸ”¬ Current Research & Development Focus

graph TB
    A[Enterprise AI] --> B[Distributed ML]
    A --> C[Real-time Inference]
    A --> D[Cost Optimization]
    
    E[Generative AI] --> F[RAG Systems]
    E --> G[Multi-Agent AI]
    E --> H[LLM Fine-tuning]
    
    style A fill:#FF6B6B
    style E fill:#4ECDC4
Loading
graph TB
    A[Statistical Methods] --> B[Survival Analysis]
    A --> C[Bayesian Inference]
    A --> D[Time Series]
    
    E[Advanced Analytics] --> F[Causal Inference]
    E --> G[Predictive Modeling]
    E --> H[Anomaly Detection]
    
    style A fill:#DDA0DD
    style E fill:#20B2AA
Loading
graph TB
    I[ML Pipeline] --> J[Feature Engineering]
    I --> K[Model Selection]
    I --> L[Deployment]
    
    M[Business Intelligence] --> N[KPI Dashboards]
    M --> O[Executive Reporting]
    M --> P[Data Visualization]
    
    style I fill:#FF69B4
    style M fill:#87CEEB
Loading
graph TB
    Q[Experimental Design] --> R[A/B Testing]
    Q --> S[Randomized Trials]
    Q --> T[Power Analysis]
    
    U[Infrastructure] --> V[Cloud Architecture]
    U --> W[DevOps Pipeline]
    U --> X[Monitoring]
    
    style Q fill:#FFB347
    style U fill:#98FB98
Loading

Current Focus Areas:

  • Distributed ML Systems: Optimizing training and inference across multi-cloud environments with 99.9% uptime
  • Real-time AI: Sub-100ms latency requirements for financial and healthcare applications achieving 95%+ accuracy
  • Advanced Analytics: Bayesian inference, survival analysis, and causal modeling for predictive insights with 85%+ precision
  • Statistical Computing: Time-series forecasting, A/B testing frameworks, and experimental design reducing decision uncertainty by 70%
  • LLM Optimization: Custom fine-tuning and RLHF for domain-specific applications improving response quality by 40%
  • Cost Engineering: ML workload optimization reducing infrastructure costs by 60-80% while maintaining performance
  • AutoML Pipelines: End-to-end automated model lifecycle management with 90%+ deployment success rate

πŸ† Professional Recognition

Best Performer Research Impact Technical Leadership

Key Achievements:

  • Technical Leadership: Led architecture decisions for systems processing 120 petabytes annually
  • Research Contributions: Published predictive maintenance algorithms with 64.53% accuracy improvement
  • Business Impact: Delivered quantifiable ROI through ML-driven operational optimization
  • Industry Recognition: Invited speaker at ML conferences and technical advisory boards

🀝 Professional Network

LinkedIn Research Gate Technical Portfolio Email


πŸ”₯ GitHub Stats

GitHub Streak


Open to collaborations in distributed systems, enterprise AI, and research partnerships

Pinned Loading

  1. AgentForge-Multi-Agentic-AI-RAG AgentForge-Multi-Agentic-AI-RAG Public

    Production-ready multi-agent RAG system with LangGraph orchestration, real-time token optimization, GPU monitoring, semantic caching, and comprehensive performance analytics. Built for scale.

    Python 1

  2. Autogen-Retrieve-Chat-System Autogen-Retrieve-Chat-System Public

    Production-ready RAG system using AutoGen's multi-agent framework for intelligent document analysis, automated code generation, and complex question answering with dynamic context management.

    Python

  3. Real-Time-Experimentation-Platform Real-Time-Experimentation-Platform Public

    πŸ§ͺ A/B testing platform with Thompson sampling multi-armed bandits achieving 23% higher conversion rates πŸ“Š Sequential testing framework with Benjamini-Hochberg correction, causal inference, and Baye…

    Python

  4. Insurance_Modelling Insurance_Modelling Public

    This repository contains a ML Project utilizing Linear Regression Models, GLMs, and various methodlogies to perform indepth analysis of a Motor Insurnace Data.

    Jupyter Notebook

  5. Multi-Robot-Coordination-Framework Multi-Robot-Coordination-Framework Public

    Multi-Robot Coordination Framework with distributed reinforcement learning achieving 92% convergence, <50ms allocation, and 99.9% availability Scalable autonomous robot fleet coordination using Q-l…

    Python

  6. Multi-GPU-Distributed-Training-Framework Multi-GPU-Distributed-Training-Framework Public

    Production-ready multi-GPU distributed training framework with DDP/FSDP, gradient compression, and 89% scaling efficiency at 16 GPUs. Includes TensorBoard monitoring, auto-checkpointing, and Kubern…

    Python 1 1

0