-
Requirements
python3.+
, Preferablypython3.7
-
Create a virtual environment
python3 -m venv $env_name
, you must specify $env_name- for example,
python3 -m venv SeqVAE
-
Setting up the environment
- Activate the environment, for example, use
source ./bin/activate
- Install dependencies,
pip3 install -r requirements.txt
- Activate the environment, for example, use
The research paper SeqVAE
-
Project Structure
. ├── README.md ├── configs.py # some configuration ├── data.py # define how to parse and encode `midi`, from `MusicVAE` ├── decoder.py ├── encoder.py │── metric.py # QN SPB evaluation ├── interpolate.py ├── lstm_utils.py # encapsulating the use of lstm, from `magenta` ├── output │ ├── create │ ├── interpolate │ │ ├── ashover2.mid │ │ └── ashover7.mid │ ├── nottingham.tfrecord # training set │ ├── nottingham_100.npy │ └── train # save the trained model │ └── seqvae_1-20200220-1422 │ ├── checkpoint │ ├── model.ckpt-23000.data-00000-of-00001 │ ├── model.ckpt-23000.index │ └── model.ckpt-23000.meta ├── requirements.txt ├── rnn_discriminator.py ├── seq_vae_generate.py ├── seq_vae_model.py ├── seq_vae_train.py └── utils.py
-
Use
- how to train,
python seq_vae_train.py ...
; - how to generate,
python seq_vae_generate.py ...
; - how to interpolate,
python interpolate.py ...
; ...
means that you need to add some options. Option description in related python file.
- how to train,