Osittelulaki
Osittelulaki on myös distributiivisuutena tunnettu algebrallinen ominaisuus laskuoperaatiolle.[1] Mielivaltaiset laskuoperaatiot ja noudattavat osittelulakia tietyssä algebrassa, jos
pitävät paikkansa kaikille , ja .
Huomaa että molemmat yhtälöt pitävät paikkansa vain, jos kertolaskuoperaatio on vaihdannainen eli kommutatiivinen. Yhtälö (1) on osittelulaki vasemmalta puolelta ja yhtälö (2) oikealta. Kun molemmat toteutuvat sanotaan että tulo-operaatio on distributiivinen yhteenlaskuoperaation suhteen.
Esimerkki
[muokkaa | muokkaa wikitekstiä]Olkoot ja tavanomaiset yhteen- ja kertolaskuoperaatiot, sekä . Reaalilukujen tavanomainen tulo-operaatio on vaihdannainen yhteenlaskuoperaation suhteen, joten molemmin puoleinen distributiivisuus pätee. Tällöin osittelulaki, eli "summan tulo on tulojen summa", saa tutun muodon.
Katso myös
[muokkaa | muokkaa wikitekstiä]Lähteet
[muokkaa | muokkaa wikitekstiä]- ↑ Thompson, Jan & Martinsson, Thomas: Matematiikan käsikirja, s. 72–73. Helsinki: Tammi, 1994. ISBN 951-31-0471-0
Kirjallisuutta
[muokkaa | muokkaa wikitekstiä]- Häsä, Jokke; Rämö, Johanna: Johdatus abstraktiin algebraan. Helsinki: Gaudeamus, 2015. ISBN 978-952-495-361-0