Booklet No. 11 - TURBIDITY
Booklet No. 11 - TURBIDITY
Booklet No. 11 - TURBIDITY
x Hach
Tabla de contenido I. Introduccin y Definicin ................................................................................................................................................ 2 Teora de Dispersin de Luz .......................................................................................................................................... 2 Historia ........................................................................................................................................................................... 3 Estndares de turbidez .................................................................................................................................................... 3 Nefelometra ................................................................................................................................................................... 5 II. Instrumentos modernos .............................................................................................................................................. 6 Fuentes de luz ................................................................................................................................................................. 6 Detectores ....................................................................................................................................................................... 7 Geometra ptica ............................................................................................................................................................ 8 III. Aspectos prcticos de la medicin de turbidez ............................................................................................................. 8 Calibracin y Verificacin de instrumentos ................................................................................................................... 8 Luz difusa ....................................................................................................................................................................... 8 Mediciones Ultra-Bajas .................................................................................................................................................. 9 IV. Tcnicas de medicin avanzada: Diseo del turbidmetro de Relacin ...................................................................... 13 Introduccin ................................................................................................................................................................. 13 Objetivos del diseo ..................................................................................................................................................... 13 Diseo ptico ............................................................................................................................................................... 14 Diseo Electrnico ....................................................................................................................................................... 16 Aplicaciones ................................................................................................................................................................. 16 Conclusin.................................................................................................................................................................... 17 Tcnicas Avanzadas, continuacin: Filtros .................................................................................................................. 18 V. Tcnicas de Medicin Correcta .................................................................................................................................... 19 VI. Enfoques innovadores para la Medicin de turbidez en Proceso ................................................................................ 20 Turbidmetros De Proceso ............................................................................................................................................ 20
Pgina 1 de 40
I. Introduccin y Definicin
Un indicador de la calidad del agua importante para casi cualquier uso es la presencia de dispersin, slidos en suspensin las partculas en disolucin verdadera y, a menudo incluyendo limo, arcilla, algas y otros microorganismos, materia orgnica y otras partculas minutos. La medida en que los slidos en suspensin se pueden tolerar vara mucho, al igual que los niveles en los que existan. Agua de refrigeracin industrial, por ejemplo, puede tolerar niveles relativamente elevados de slidos en suspensin sin problemas significativos. En las calderas modernas de alta presin, sin embargo, el agua debe estar prcticamente libre de todas las impurezas. Los slidos en el agua potable pueden apoyar el crecimiento de microorganismos nocivos y reducir la eficacia de la cloracin, lo que resulta en peligros para la salud. En casi todos los suministros de agua, altos niveles de materia en suspensin son inaceptables por razones estticas y pueden interferir con las pruebas qumicas y biolgicas. Slidos en suspensin obstruyen la transmitancia de la luz a travs de una muestra de agua e imparten una caracterstica cualitativa, conocida como la turbidez, el agua. La American Public Health Association (APHA) define la turbidez como una "expresin de la propiedad ptica que hace que la luz se disperse y absorba, en lugar de transmitirse en lnea recta a travs de la muestra"1. La turbidez puede ser interpretado como una medida de la claridad relativa de los agua. La turbidez no es una medida directa de las partculas en suspensin en el agua, sino una medida de los efectos de dispersin que tales partculas tienen en la luz.
Pgina 2 de 40
En la deteccin de luz dispersa es importante el color de los slidos en suspensin y del lquido de la muestra. Una sustancia de color absorbe la energa de la luz en determinadas bandas del espectro visible, cambiar el carcter tanto de la luz transmitida y luz dispersada y la prevencin de una cierta porcin de la luz dispersada llegue al sistema de deteccin. Dispersin de la luz intensifica a medida que aumenta la concentracin de partculas. Pero a medida que la luz dispersada golpea ms y ms partculas, dispersin mltiple se produce y la absorcin de la luz aumenta. Cuando la concentracin de partculas excede de un cierto punto, los niveles detectables de ambos gota luz dispersada y transmitida rpidamente, que marca el lmite superior de la turbidez medible. La disminucin de la longitud de la trayectoria de la luz a travs de la muestra reduce el nmero de partculas de entre la fuente de luz y el detector de luz y extiende el lmite superior de la medicin de la turbidez.
Historia
Intentos prcticos de cuantificar turbidez datan desde 1900 cuando Whipple y Jackson2 desarrollaron un fluido de suspensin estndar con 1.000 partes por milln (ppm) de tierra de diatomeas en agua destilada. La dilucin de esta suspensin de referencia dio como resultado una serie de suspensiones estndar utilizados para derivar una escala en ppm-slice para la calibracin de turbidmetros contemporneos. Jackson emple la escala de ppm-slice para un turbidmetro existente llamado diafanmetro, creando lo que se conoce como el turbidmetro a vela Jackson. Consta de una vela especial y un tubo de vidrio de fondo plano, calibrado por Jackson en graduaciones equivalentes a ppm de turbidez de slice suspendida. La medicin se hace vertiendo lentamente una muestra turbia en el tubo hasta que la imagen visual de la llama de la vela, vista desde la parte superior abierta del tubo, difunde a un brillo uniforme (Figura 2). Visualmente la extincin ocurre cuando la intensidad de la luz dispersa iguala la de la luz transmitida. La profundidad de la muestra en el tubo se lee con la escala ppm-slice, y la turbidez se refiere en trminos de unidades de turbidez Jackson (JTU). Sin embargo, se elaboraron las normas de los materiales encontrados en la naturaleza, como la tierra de batn, caoln y sedimentos de lecho del arroyo, por lo que es difcil de lograr la coherencia en la formulacin.
Estndares de turbidez
En 1926, Kingsbury y Clark3 desarrollaron formacina, una suspensin casi ideal para los estndares de turbidez preparadas pesando con precisin y disolviendo 5,00 g de sulfato de hidracina y 50,0 g de hexametilentetramina en un litro de agua destilada (Figura 3). La solucin se desarrolla una turbidez blanca despus de permanecer a 25 C durante 48 horas. En condiciones ambientales ideales de temperatura y la luz, esta formulacin se puede preparar en varias ocasiones con una precisin de 1%. Formacina es el nico estndar de turbidez que se conoce y puede ser repetible hecho con materias primas trazables. El resto de las normas, tanto alternativos y secundarios, deben ser controlados contra formacina. Patrones de turbidez primarios preparados por sntesis directa de suspensiones de formacina han sido aceptados casi universalmente por la industria del agua y otras industrias relacionadas. 2 3 M.I.T. Trimestral, vol. 13, 1900, pgina 274. Kingsbury, Clark, Williams y el Post, J. Lab. Clin. Med., Vol. 11, 1926, pgina 981.
Pgina 3 de 40
Formacina tiene varias caractersticas deseables que hacen que sea un excelente estndar de turbidez. En primer lugar, es reproducible preparado desde materias primas analizadas. En segundo lugar, las caractersticas fsicas hacen que sea un estndar de calibracin de la luz de dispersin deseable. El polmero formacina consiste en cadenas de varias longitudes diferentes, que se pliegan en configuraciones aleatorias. Esto se traduce en una amplia gama de tamaos y formas de las partculas que van desde menos de 0,1 a ms de 10 micras. Los estudios sobre la distribucin de partculas indican distribuciones irregulares entre los diferentes lotes de estndar, pero la dispersin nefelomtrica estadstica global es muy reproducible. Esta amplia gama de tamaos de partculas y formas encaja analticamente la posibilidad amplia de tamaos de partculas que se encuentran en muestras del mundo real. Debido a la reproducibilidad estadstica de la dispersin nefelomtrico de la luz blanca por el polmero formacina, instrumentos con diseos pticos tradicionales de luz a filamento de tungsteno blanco pueden calibrarse con un alto grado de precisin y reproducibilidad. La aleatoriedad de formas y tamaos de partculas dentro de los estndares de formacina produce dispersin estadsticamente reproducible en todas las marcas y modelos de turbidmetros. Debido a las caractersticas de dispersin y reproducibilidad, de la formacina y su trazabilidad, los algoritmos de calibracin y criterios de actuacin del turbidmetro pueden basarse universalmente en esta norma. En 1955, la relacin de las partes por milln de concentracin de slice y la turbidez se haba abandonado y la Ediciones 10 y posteriores de Standard Methods describen turbidez en trminos de dispersin de la luz debido a la materia en suspensin. Los trminos "unidades ppm" y "escala de slice" se interrumpieron; las unidades adoptadas son simplemente "Unidades de turbidez". Al aceptar la formacina como estndar de referencia primaria, las unidades de medicin de la turbidez se conocan como unidades de turbidez de formacina (FTU). Formacina fue adoptado por primera vez por la APHA y la Asociacin American Water Works (AWWA) como material patrn de turbidez primaria en la 13 edicin de los Standard Methods para el examen de agua y aguas residuales. La USEPA define estndares primarios ligeramente diferentes, usando el trmino en el sentido que las normas de la EPA ha determinado que puede utilizarse con fines informativos. El tema de las normas de medicin turbidimtrica es complicado en parte por la gran variedad de tipos de estndares de uso comn, y en parte por las diferencias en las definiciones utilizadas por organizaciones como la EPA y APHA y AWWA en Standard Methods. En la 19 edicin de Standard Methods, se hiz aclaracin en la definicin de las normas primarias y secundarias. Standard Methods define un patrn primario como uno preparado por el usuario a partir de materias primas trazables, utilizando metodologas precisas bajo condiciones ambientales controladas. En turbidez, el nico estndar que puede ser estrictamente definida como primario es formacina que ha sido preparado por el usuario en la mesada. Standard Methods ahora define los estndares secundarios los estndares que un fabricante (o una organizacin de pruebas independiente) ha certificado para dar resultados de calibracin instrumento equivalente (dentro de ciertos lmites) a los obtenidos cuando un instrumento est calibrado con estndares de formacina preparada por el usuario. Varios patrones secundarios para la calibracin incluyen suspensiones comerciales de valores de 4000 NTU, suspensiones estabilizadas de formacina y suspensiones comerciales de microesferas de poliestireno-divinilbenceno. Los estndares de verificacin de Calibracin suministrados por los fabricantes de instrumentos, tales como celdas de sellados llenos de suspensin de ltex o con partculas de xido metlico en un gel de polmero, se utilizan para verificar el rendimiento del instrumento entre calibraciones y no se utilizan en la realizacin de calibraciones de instrumentos. Si hay una discrepancia en la precisin de una norma o un instrumento, el patrn primario (es decir, formacina preparada por el usuario) se va a utilizar para gobernar la validez de la cuestin. En turbidez, formacina es el nico verdadero patrn primario reconocido y todas las dems normas se remonta a formazin. Definiciones de USEPA difieren de Standard Methods. Actualmente, la USEPA designa formacina preparada por el usuario, formacina suspensiones comerciales existentes, suspensiones de formacina estabilizadas (StablCal ) y suspensiones de estireno-divinilbenceno comerciales (a veces referido como "estndares alternativos") como estndares de calibracin primaria y utilizable para la elaboracin de informes. El trmino secundario es utilizado por la USEPA para esas "estndares" que se usan slo para comprobar o verificar las calibraciones. Bajo esta definicin, primaria no tiene nada que ver con la trazabilidad, para la aceptacin a efectos de informacin USEPA. Este uso depende del diseo de la norma. Bajo la definicin de la USEPA, estndar secundario, una vez que sus valores se determinan en comparacin a formacina primaria, se utilizan para verificar la calibracin de un turbidmetro. Sin embargo, estas normas no son para utilizarse en la calibracin de instrumentos. Ejemplos de estos estndares incluyen los geles de xido de metal, suspensiones de ltex, y cualquier otro estndar no acuoso que est diseado para controlar las calibraciones en el da a da.
Pgina 4 de 40
Estndares de Turbidez StablCal tienen muchas ventajas sobre formacina tradicional y otros patrones de turbidez secundarios. En primer lugar, los patrones StablCal son estables durante un mnimo de dos aos. Figura 5 (p. 8) muestra la estabilidad de los patrones StablCal de tres concentraciones diferentes - 2,0, 10,0 y 20,0 NTU. La estabilidad de estos estndares es independiente de la concentracin. En segundo lugar, los patrones StablCal son preparados en concentraciones especficas, eliminando la tediosa preparacin y problemas de diluciones volumtricas. En tercer lugar, los patrones StablCal tienen la misma distribucin de tamao de partcula que formacina y pueden sustituirse directamente por formacina. As, un estndar StablCal tiene una concentracin definida que es independiente de cualquier instrumento. Figura 6 (pg. 8) muestra el rendimiento comparable de los patrones StablCal a estndares de formacina tradicionales en el rango de 1 a 5 NTU en una amplia gama de turbidmetros. Por ltimo, los patrones StablCal se pueden preparar de forma repetible a partir de materias primas trazables, y pueden considerarse patrones primarios. La naturaleza de la matriz de patrones StablCal tambin ha contribuido a reducir los riesgos potenciales para la salud que estn asociados con los estndares tradicionales de formacina. Los componentes de esta matriz eliminan eficazmente cualquier rastro de hidracina del estndar. La concentracin de hidracina se reduce a niveles que estn por debajo de los lmites de deteccin analticos. Niveles de hidracina en patrones StablCal se han reducido en al menos tres rdenes de magnitud por encima de los estndares de formacina tradicionales de igual turbidez. Dado que los patrones StablCal se pre-hacen, la nica preparacin de usuario requerida es mezclar bien los estndares antes de su uso. Esto elimina la exposicin al estndar, reduce la contaminar potencial del estndar, y ahorra tiempo que de otra manera se gastara en la elaboracin de estos estndares por dilucin volumtrica.
Nefelometra
Histricamente, la necesidad de mediciones precisas para muy baja turbidez en muestras que contienen slidos finos exige avances en el rendimiento del turbidmetro. El turbidmetro Jackson a vela presenta serias limitaciones prcticas porque no se puede medir turbidez inferior a 25 JTU, era un poco engorroso, y era dependiente del juicio humano para determinar el punto exacto de la extincin. Adems, debido a que la fuente de luz en el instrumento Jackson era una llama de vela, la luz incidente fue emitida en el extremo mayor longitud de onda del espectro visible (amarillo-rojo), donde las longitudes de onda no estn dispersas como efectivamente por las partculas pequeas. Por esta razn, el instrumento no era sensible a suspensiones de partculas muy finas. (Una slice muy fina no producir una imagen de extincin de llama de vela del turbidmetro Jackson.) El turbidmetro de vela Jackson tambin fue incapaz de medir la turbidez debido a partculas negras de carbn, porque la absorcin de la luz era mucho mayor que la dispersin de la luz en el campo de visin se hizo oscuro antes de poder verter suficiente muestra en el tubo para llegar al punto de extincin de imagen. Varios turbidmetros de extincin visual fueron desarrollados con la mejora de las fuentes de luz y tcnicas de comparacin, pero errores de juicio humanos contribuyeron a la falta de precisin. Detectores fotoelctricos, sensibles a cambios muy pequeos en la intensidad de luz, se hizo popular para medir la atenuacin de la luz transmitida a travs de una muestra de volumen fijo. Los instrumentos proporcionan una precisin mucho mayor en ciertas condiciones, pero todava estaban limitados en su capacidad para medir alta o muy baja turbidez. A bajas intensidades de Figura 4: En nefelometra, la turbidez se determina por la luz dispersin, el cambio en la luz transmitida, visto desde una dispersa a 90 respecto del haz incidente. vista coincidente, era tan pequeo que es prcticamente indetectable por cualquier medio. Tpicamente, la seal se pierde en el ruido electrnico. En concentraciones ms altas, la dispersin mltiple interfiere con la dispersin directa. La solucin a este problema consiste en medir la luz dispersa en un ngulo al de luz incidente y luego relacionar esta luz de ngulo dispersa a la turbidez real de la muestra. Un ngulo de deteccin de 90 se considera que es muy sensible a la dispersin de partculas. La mayora de instrumentos modernos miden 90 de dispersin (Figura 4), estos instrumentos se llaman nefelmetros o turbidmetros nefelomtricos, para distinguirlos de los turbidmetros genricos, que miden la relacin de transmisin de la luz absorbida. Figura 5. StablCal , Formacina estndar estabilizada Su La solucin a este problema consiste en estabilidad vs el tiempo. medir la luz dispersa en un ngulo del haz incidente y luego relacionar esta luz de ngulo dispersa a la Pgina 5 de 40
turbidez real de la muestra. Un ngulo de deteccin de 90 se considera que es muy sensible a la dispersin de partculas. La mayora de instrumentos modernos miden 90 de dispersin (Figura 4), estos instrumentos se llaman nefelmetros o turbidmetros nefelomtricas, para distinguirlos de los turbidmetros genricos, que miden la relacin de transmisin de la luz absorbida. Debido a la sensibilidad, precisin y aplicabilidad en un tamao de partcula de ancho y rango de concentracin en nefelometra, el nefelmetro ha sido adoptado por los mtodos estndar como el medio preferido para la medicin de la turbidez. Del mismo modo, la expresin preferida de la turbidez est en unidades nefelomtricas de turbiedad (NTU). La publicacin de la Agencia de Proteccin Ambiental de EE.UU., Mtodos de Anlisis Qumico de Aguas y Residuos, tambin especifica el mtodo nefelomtrica de anlisis para la medicin de la turbidez. Para distinguir entre turbidez derivada del nefelmetro y mtodos visuales, los resultados de la actual se expresan como NTU y la anterior como UTJs (1 UTJ = 4 NTU). Adems, se utilizan los trminos FNU (formazina unidad Figura 6. StablCal formacina estndar estabilizada contra nefelomtrica) y UAF (unidad de atenuacin de formazin diluida. Todos los instrumentos se calibraron formazina). FNU es una unidad que se aplica a la con formacina estndar medicin nefelomtrica y FAU se refiere a una medicin de transmisin (o absorbido). Sin embargo, NTU, FTUs, FNUs y FAUs se basan en el mismo patrn primario de formacina.
Fuentes de luz Si bien muchos tipos de fuentes de luz que se utilizan hoy en da en nefelmetros, el ms comn
es la lmpara de filamento de tungsteno. Una lmpara de este tipo tiene una salida espectral de ancho y es robusta, de bajo costo y confiable. Rendimiento especfico de la lmpara se cuantifica a menudo en trminos de "temperatura de color" de la lmpara - la temperatura a la que un perfecto "radiador de cuerpo negro" debe ser operado para producir un determinado color. Temperatura de color de una lmpara incandescente y, por lo tanto, la salida espectral es una funcin de la tensin de funcionamiento de la lmpara. Salida de la lmpara incandescente estable requiere una fuente de alimentacin bien regulada.
Fuentes monocromticas o de banda estrecha se pueden utilizar para aplicaciones nefelomtricas cuando estn presentes tipos de partculas especficos en la muestra o cuando se necesita una fuente de luz bien caracterizada. Un ejemplo de tal fuente de luz es el diodo emisor de luz (LED). Los led emiten luz en una banda estrecha en comparacin con una fuente incandescente (Figura 7). Debido a que son ms eficientes que las lmparas incandescentes en la produccin de luz visible, los requisitos de energa para una intensidad dada son mucho ms bajos. Pgina 6 de 40
Figura 7. Caractersticas espectrales tpicas de: lmpara de filamento W en tres temperaturas de color, un Led de 560nm, un lser He/Ne, y un LED de 860 nm (ISO 7027).
La aplicacin de estas fuentes de luz de banda estrecha se est expandiendo. Otras fuentes de luz utilizadas con menor frecuencia en la instrumentacin incluyen nefelometra lser, lmparas de mercurio (lmparas de descarga) y varias combinaciones lmpara / filtro. Para propsitos de reporte, la EPA requiere el uso de un instrumento con una lmpara de filamento de tungsteno que funciona a una temperatura de color en la gama de 2200-3000 K. En la Comunidad Europea, el requisito de la luz ISO es un instrumento con una salida de luz incidente de 860 nm y un ancho de banda espectral de menos de 60 nm. Fuentes de luz de tungsteno son ms sensibles a las partculas pequeas, pero el color de la muestra por lo general interfiere; instrumentos con una potencia 860 nm no son tan sensibles a las partculas pequeas, pero no es probable que tengan injerencia color. Detectores Cuando la seal luminosa impuesta ha interactuado con la muestra, su respuesta debe entonces ser detectado por el instrumento. Hay cuatro tipos de detectores usados actualmente en nefelmetros: el tubo fotomultiplicador, fotodiodo de vaco, el fotodiodo de silicio, y el sulfuro de cadmio fotoconductor. Estos detectores difieren en su respuesta a una distribucin de longitud de onda particular (Figura 8). Fotomultiplicadores utilizados en instrumentacin nefelomtrico tienen sensibilidad espectral pico en el extremo cercano ultravioleta y azul del espectro visible. Para mantener una buena estabilidad, que requieren una fuente de alimentacin bien regulada de alto voltaje. Un fotodiodo de vaco generalmente exhibe una respuesta espectral similar a la de un fotomultiplicador y es algo ms estable que el fotomultiplicador. Sin embargo, sus caractersticas se ven afectadas por las condiciones ambientales, particularmente la humedad. Fotodiodos de silicio tienen generalmente un pico de sensibilidad espectral en la regin del rojo visible o el infrarrojo cercano. El sulfuro de cadmio fotoconductor tiene una respuesta espectral pico en algn lugar entre la del Figura 8. Caractersticas de respuesta espectral fotomultiplicador y el fotodiodo de silicio. tpica de cuatro fotodetectores Tanto la distribucin espectral de la fuente y la respuesta espectral del detector son elementos clave en el rendimiento de un nefelmetro. En general, para un detector dado, cuando la fuente de luz incidente es de longitud de onda ms corta, el instrumento es ms sensible a las partculas ms pequeas. A la inversa, cuando la fuente de luz es de longitud de onda ms larga, el instrumento es ms sensible a las partculas relativamente grandes. El detector de un instrumento afecta a la respuesta de una manera similar. Los tubos fotomultiplicadores de vaco y fotodiodos son extremadamente sensibles en las regiones ultravioleta y azul (longitud de onda corta) del espectro, un nefelmetro utilizando una fuente de luz policromtica y estos componentes de deteccin es ms sensible a las partculas relativamente pequeas. Un fotodiodo de silicio del detector de picos de respuesta espectral a longitudes de onda ms largas y es ms sensible a las partculas de mayor tamao relativo.
Figura 9. Distribucin espectral efectiva de lmpara de W a3.000K / detector CdS fotoconductividad.
En un instrumento real, la combinacin de fuente/detector define las caractersticas espectrales eficaces del instrumento y la forma en que es capaz de responder a una muestra. La Figura 9 muestra las caractersticas espectrales de un instrumento con una fuente de luz de tungsteno y fotodetector de sulfuro de cadmio. Picos de este instrumento en la sensibilidad espectral de aproximadamente 575 nm. La figura 10 muestra las caractersticas espectrales del instrumento utilizando la misma fuente de luz y un fotodiodo de silicio como el detector; su sensibilidad espectral pico es de aproximadamente 875 nm. Debido a esta diferencia en la respuesta espectral, el instrumento representado en la Figura 9 es ms sensible a las partculas ms pequeas que el instrumento representado en la Figura 10. Estos diagramas Figura 10. Distribucin espectral efectiva de 3000 K ilustran tambin que se obtiene la mxima eficiencia del lmpara de W/ detector fotodiodo Si. sistema cuando la fuente y el detector estn bien adaptados y sus curvas espectrales tener mximo solapamiento.
Pgina 7 de 40
Geometra ptica
El tercer componente crtico que afecta a la respuesta caracterstica de un nefelmetro es la geometra ptica, que incorpora los parmetros de diseo de instrumentos, tales como el ngulo de deteccin de la luz dispersada. Como se explica en la seccin relativa a la teora de dispersin, las diferencias en la composicin de la muestra de partculas causan diferentes intensidades de dispersin angular. Casi todos nefelmetros utilizados en anlisis de agua y aguas residuales utilizan un ngulo de deteccin de 90 . Adems de ser menos sensible a las variaciones de tamao de partcula, un ngulo de deteccin de 90 proporciona un sistema ptico sencillo con luz espuria muy baja. El camino recorrido por la luz dispersada es un parmetro de diseo que afecta a la sensibilidad del instrumento y la linealidad. La sensibilidad aumenta a medida que aumenta la longitud de trayectoria, pero la linealidad se sacrific a altas concentraciones de partculas debido a la dispersin mltiple y la absorbancia. Por el contrario, si se reduce la longitud de la trayectoria, la gama de linealidad se incrementa, pero se pierde la sensibilidad a bajas concentraciones (esta compensacin puede ser eliminada con una longitud de trayectoria ajustable). El uso de una longitud de recorrido corto tambin puede aumentar el impacto de la luz externa. Tanto EPA e ISO requieren una longitud de trayectoria de menos de 10 cm total de (medida a partir de filamento de la lmpara al detector) en el diseo del instrumento. Los turbidmetros relacin fabricados por HACH utilizan una combinacin de dispositivos pticos para lograr un mayor grado de estabilidad: un detector de 90 , una combinacin de transmisin, de la dispersin frontal, y detectores de retrodispersin, y espejos negros. Ms informacin sobre estos instrumentos y sus componentes se proporciona en la seccin relacin de este manual (vea la pgina 16).
Luz difusa
La luz difusa es una fuente importante de error en las mediciones turbidimtricas a bajo nivel. La luz difusa que llega a los detectores de un sistema ptico, no viene de la muestra. Un instrumento responde tanto a la luz dispersada por la muestra y las fuentes de luz parsita dentro del instrumento. Luz difusa tiene un nmero de fuentes: las celdas de muestra con superficies rayadas o imperfecta, reflexiones dentro del compartimento de la muestra celular, reflexiones dentro del sistema ptico, las lmparas que emiten luz divergente, Pgina 8 de 40
y, en pequea medida, la electrnica. En el diseo de un instrumento, lentes, diafragmas, espejos negros, y varias trampas de luz se usan para ayudar a minimizar la luz difusa. Sin embargo, existe un importante contributo a la luz dispersa que el diseo no puede manejar: la contaminacin por polvo en la celda de muestra y compartimientos pticos del instrumento. Con el tiempo, la luz difusa en un turbidmetro se incrementar a medida que aumenta la contaminacin por polvo. En general, los turbidmetros de proceso tendrn una luz dispersa inferior a los turbidmetros de laboratorio si se disean sin un compartimiento de celda de muestra. A diferencia del caso de espectrofotometra, el efecto de luz parsita en la medicin turbidimtrica no puede "llevarse a cero". Algunos fabricantes intentan hacer esto con procedimientos en los que el usuario coloca una muestra de agua "libre de turbidez" en el compartimento de la celda de muestra y luego poner a cero el turbidmetro mediante el ajuste de la salida del instrumento. Al hacer esto, varios aspectos importantes de la medicin de la Tabla 1. La luz difusa de Turbidmetros Hach. turbidez se pasan por alto. En primer lugar, el agua siempre Instrumento Rango luz difusa tendr partculas, incluso filtrada con los mejores sistemas de 2100A 0 a 10 NTU <0,04 NTU filtracin disponibles. Adems, las propias molculas de agua 2100 A 0 a 100, <0,5 NTU dispersan la luz. La dispersin molecular y la presencia de 0 a 1000 NTU partculas ultra pequeas contribuyen a la turbidez de cada SS6/SS6SE 0 a 10000 NTU <0,04 NTU * muestra acuosa. Cuando se mide una celda redonda de muestra de Ratio , 0 a 200, <0,012 NTU 1 pulgada que contiene agua de turbidez ultra-baja, el valor real Ratio XR 0 a 2000 NTU ms bajo es de aproximadamente 0,010-0,015 NTU, en funcin 1720C 0 a 100 NTU <0,01 NTU * del sistema ptico utilizado. La propia celda de muestra tambin 1720D 0 a 100 NTU <0.008 NTU * puede desempear un papel complicado en la luz difusa, 2100P 0 a 1000 NTU <0,02 NTU aportndole a travs de cualquier araazo o imperfeccin que 2100N/AN 0 a 10000 NTU <0,01 NTU afectan al haz incidente. La celda de muestra tambin puede 2100 AN es 0 a 10000 NTU <0,005 NTU ayudar a enfocar el haz, lo que reducira la luz parsita. Otro 2100 N es 0 a 10000 UNT <0.5 NTU factor importante es el conjunto de variables que se introducen / UNF cuando se utiliza ms de una celda de muestra. Una segunda Pocket <0,1 NTU 0 a <0.1 NTU celda de muestra puede contribuir con efectos de luz parsita (y Turbidmetro 400 NTU probablemente lo hacen) difiriendo significativamente de la celda de muestra utilizada para poner a cero el instrumento. Todas estas * Los valores no se publican directamente. La especificacin ES6 se deriva de la especificacin consideraciones son ignoradas cuando se pone a cero el de precisin; en 1720C y 1720D se estiman instrumento. Una parte sustancial de la muestra medida llevada a estrechamente con ultra-baja recuperacin cero ser falsamente atribuida a la turbidez del agua pura, cuando adicionar de patrn. en realidad hay muchos factores que intervienen. En este caso, el exceso de correccin resultar en lecturas falsamente bajas. Es difcil de determinar un valor cuantitativo para la luz difusa en un turbidmetro. Uno de los mtodos utilizados para determinar la luz difusa de un instrumento es preparar una suspensin de formacina de baja turbidez conocida. Este estndar es entonces agregado con precisin varias veces, con el valor que se est midiendo entre cada agregado. A travs de la tcnica de adicin de estndar, se calcula el valor terico del estndar de partida y se evala con respecto al valor medido. Restando el valor medido del estndar a partir de los resultados de valor terico en una diferencia que es una estimacin aproximada de la luz difusa. Este mtodo de determinacin de la luz difusa es muy difcil y requiere limpieza extrema y medicin muy precisa. Sin embargo, es un mtodo eficaz para la determinacin de la luz difusa. Si son importantes las mediciones baja, la luz difusa se debe considerar como parte de la medicin. Mediante el uso de este mtodo, la luz parsita estimada del instrumento puede ser un factor fuera de la medicin. La tabla 1 muestra la luz difusa estimada de turbidmetros Hach. Hay varios mtodos para reducir la luz parsita. En primer lugar es el uso de tcnicas de ultra-limpios en el manejo de las dos celdas de la muestra y el instrumento. El instrumento se debe mantener en un ambiente limpio y libre de polvo con el fin de reducir la contaminacin. El instrumento debe limpiarse cuidadosamente a intervalos regulares. Celdas de muestra deben limpiarse escrupulosamente dentro y por fuera. Cuando no est en uso, las celdas de muestra deben taparse para evitar la contaminacin por polvo. Adems, el exterior de la celda de muestra debe recubrirse con aceite de silicona con el fin de tapar rasguos de menor importancia que aumentaran la luz parsita.
Mediciones Ultra-Bajas
La medicin de turbidez ultra-baja es el principal inters en la ciencia turbidez. Esto se aplica generalmente a la medicin de las muestras acuosas limpias que son menores de 1 NTU de turbidez. En estas muestras, ni partculas individuales ni cualquier neblina sern visibles a simple vista. Los ejemplos incluyen agua potable y aplicaciones de agua ultra puras tales como las de industrias de semiconductores o plantas de energa. En la medicin de muestras de ultra-baja turbidez, existen dos fuentes principales de error: desviacin de la luz (discutido anteriormente) y la contaminacin de la muestra por partculas. La contaminacin de partculas es una fuente significativa de error. Se tratan varios puntos para reducir al mnimo de esta fuente de error y se discuten a continuacin: 1. Celdas de muestra y tapas deben limpiarse meticulosamente . Pgina 9 de 40
El siguiente procedimiento es recomendado para la limpieza de las celdas de la muestra. a) Lavar las celdas de muestra con agua desionizada y jabn. b) inmediatamente remoje las celdas de la muestra en una solucin de cido clorhdrico 1:1 por no menos de una hora. Las celdas tambin se pueden colocar en un bao ultrasnico para facilitar la eliminacin de partculas de las superficies del vidrio. c) inmediatamente despus lave las celdas con agua desionizada ultrafiltrada (filtro de smosis inversa o por filtro 0,2 micras). Enjuague un mnimo de 15 veces. d) Inmediatamente despus de enjuagarlas, cierre las celdas para evitar la contaminacin del aire, y para evitar que las paredes de las celdas se desequen. Puede realizarse una prueba sencilla para evaluar la limpieza de las celdas de la muestra. Llene la cubeta limpia con agua desionizada ultrafiltrada. Deje reposar durante unos minutos. Cubra la celda con aceite de silicona y mida la turbidez. Luego, coloque la misma celda en un bao de ultrasonidos durante 5 segundos. Silicone la celda y vuelva a medir la turbidez. No invierta celda durante la prueba. Si no hay cambio en la turbidez, las celdas pueden considerarse limpias. Si la turbidez aumenta, las celdas todava estn sucias. El aumento de la turbidez por la sonicacin se debe a las partculas de las paredes interiores de las celdas, contaminando as la muestra. Otro indicio de celdas sucias es el ruido en la lectura. Celdas ultra-limpias con agua ultrafiltrada mostrar un nivel de turbidez baja muy consistente de menos de 0,03 NTU. 2. Orientacin de las celdas de Muestra Una vez que las celdas se han limpiado, llenarlas con agua ultrafiltrada de baja turbidez. Djelas reposar para que las burbujas suban. A continuacin, cubra las celdas con aceite de silicona y mida la turbidez en varios puntos girndolas. Encuentre la orientacin con la lectura de turbidez menor y marque esta orientacin. Utilice esta orientacin para llevar a cabo todas las mediciones de la muestra. 3. Eliminacin de las burbujas. Las micro burbujas pueden ser una fuente de interferencia positiva en la medicin de la turbidez. La mejor manera de reducir esta interferencia es dejar reposar la muestra durante varios minutos para permitir que las burbujas se desalojen. Si debe mezclar la muestra, tiene que ser lenta y suavemente invertida varias veces. Esto mezcla la muestra sin introducir burbujas de aire que pudieran aparecer en la medicin. La aplicacin de vaco a la muestra tambin es eficaz. Sin embargo, se debe tener cuidado de no contaminar la celda de muestra con el dispositivo de aspiracin al vaco. Tambin se pueden utilizar baos de ultrasonido para eliminar las burbujas, pero las celdas de muestra deben demostraron ser limpiado usando un bao de ultrasonidos antes de que el bao se utiliza, adems, para eliminar las burbujas. Adems, el bao de ultrasonidos puede hacer que las partculas de la muestra a la fractura y cambiar el tamao, o de romper las paredes de las celdas de muestra de nuevo en la muestra, aumentando as la turbidez de la muestra. 4. Celdas de muestra deben mantenerse limpias. La limpieza exterior de las celdas de la muestra con aceite de silicona ayuda a evitar que las partculas se adhieran a las paredes exteriores. El aceite de silicona tambin ayudar a reducir la luz parsita, rellenando las pequeas imperfecciones que de otro modo dispersan la luz. 5. Si es posible, utilice una cubeta. Se debe utilizar para medir todas las muestras una sola celda de muestra que se ha demostrado que est limpia y de alta calidad ptica. Cuando se inserta en la misma posicin, la turbidez relativa de las muestras se puede comparar con precisin, lo que elimina cualquier interferencia causada por la celda. Si se necesita ms de una celda, deben estar indexadas. Utilice la mejor celda de muestra para calibrar el punto ms bajo del turbidmetro. Use esta celda para medir todas las muestras con baja turbidez. Precisin del instrumento en el rango bajo de medicin Es muy importante para verificar la precisin y la respuesta en el rango en el que las mediciones de turbidez de bajo nivel se llevan a cabo de un instrumento. Patrones de turbidez tradicionalmente aceptados son difciles de preparar a estos niveles y no son estables por mucho tiempo. En la actualidad, hay dos mtodos disponibles para comprobar la precisin del instrumento de bajo nivel. El mtodo ms sencillo consiste en el uso de estndares de verificacin de formacina estabilizadas definidas. Estos estndares estn disponibles en el rango de 0.10 a 1.00 NTU y se preparan en la sntesis rigurosa y condiciones de envasado para lograr la mxima precisin posible. Adems, instrucciones detalladas explican la utilizacin exacta de estos estndares para lograr una medicin precisa de rendimiento del instrumento de bajo nivel y la tcnica de medicin. Un segundo mtodo para evaluar el rendimiento del instrumento a niveles ultra bajos de turbidez es colocar una muestra medida con un volumen conocido de la estndar estable. Para realizar correctamente esta prueba, se necesita lo siguiente: Agua de turbidez ultra-baja, preferiblemente de smosis inversa, filtrada por membrana de 0,2 m (o menor) Material de vidrio Ultra-limpio, incluyendo celdas de muestra de alta calidad ptica Un patrn de turbidez de formacina recin preparada, 20,0 NTU Una pipeta de medicin precisa.
Pgina 10 de 40
Con estos materiales, el usuario puede determinar la respuesta del instrumento a un aumento de turbidez. A continuacin se muestra un ejemplo de cmo realizar esta prueba: 1. Pipetear 25,0 ml de agua (smosis inversa filtrada) en una cubeta de turbidmetro ultra-limpia. La celda de muestra debe estar seca. Tapar inmediatamente esta celda. 2. Pulir la celda de muestra y colocarla en el turbidmetro. 3. Esperar que la lectura se estabilice. Normalmente es necesario una espera de 1 a 5 minutos para que todas las burbujas evacen la muestra. 4. Registre la lectura de turbidez estable. 5. Use una punta de pipeta limpia, con 0,5 ml de patrn de formacina de 20 NTU (pipeta de 0 a 1,0 ml) y Pipetear. El patrn de formacina debe estar bien mezclado antes de su uso. La cantidad de turbidez aadida es de 0,39 NTU. 6. Tapar la celda de muestra, y poco a poco y con cuidado invertir 10 veces para mezclar. 7. Re-siliconar la celda de muestra. Colocar la cubeta en el mismo lugar en el turbidmetro. 8. Una vez ms, esperar 1-5 minutos para que la lectura se estabilice. 9. Registre la lectura indicada estable. La diferencia entre el valor registrado en el paso 9 y el valor de agua de smosis inversa antes del agregado en el paso 4 es debido a la respuesta del instrumento al agregado de 20 NTU a la muestra. Tericamente, esta respuesta de la turbidez es (en este ejemplo) 0,39 NTU. La diferencia entre la respuesta del instrumento y los valores tericos se puede estimar como el error del turbidmetro (en NTU) en la lectura a este nivel. La luz difusa, tanto del instrumento como de la celda son una gran parte de este error. Este valor de error puede ser restado de las mediciones de turbidez baja. Este procedimiento funciona muy bien, siempre y cuando (1) el material de vidrio utilizado est meticulosamente limpio; (2) la muestra enriquecida se lea inmediatamente despus de la preparacin (a menos de 30 minutos); (3) el agregado se haga con precisin; (4) usar una sola celda marcada en todo el proceso, (5) la ptica del instrumento estar limpia y el instrumento estar en un ambiente limpio, y (6) en este examen se utilizar la misma celda de medicin que para medir muestras. Caractersticas del agua ultrapura Cuando el agua ha alcanzado un estado ultra-limpio, tiene varias caractersticas que pueden ser reconocidos en la realizacin de una medicin de la turbidez. Con el fin de evaluar con precisin la calidad de las muestras en estos niveles, todas las tcnicas discutidas se deben aplicar a la preparacin y medicin de estas muestras. Las caractersticas de las muestras ultra-puras son los siguientes: 1. La lectura de la turbidez es tpicamente entre 0,010 y 0,030 NTU cuando se mide en un turbidmetro de laboratorio debidamente calibrado con baja luz difusa. 2. La lectura de la turbidez ser estable (la lectura indicada no variar) a 0,001 NTU. Si la lectura flucta ms de 0.003 NTU, puede deberse a partculas o burbujas que se desplazan a travs del haz de luz. Si la variacin se debe a burbujas, stas saldrn de la muestra con tiempo y las lecturas se estabilizarn. 3. La lectura de la turbidez ser n cambia, incluso cuando la muestra se somete a un cambio de temperatura. 4. La muestra puede ser coloreada, pero ser altamente transparente. No hay partculas sern visibles a simple vista. Debido a su alta pureza, las muestras ultra-limpias son muy agresivas. Con el tiempo tales muestras pueden disolver una muestra desde el vidrio hacia la celda de muestra al punto que aumentar la turbidez. Sin embargo, esto no es inmediato, toma generalmente ms de 24 horas. Por lo tanto, siempre se deben utilizar muestras frescas medir la turbidez. Medicin de Turbidez Ultra-Alta Mediciones de turbidez ultra-alta son generalmente mediciones de turbidez donde la dispersin de luz nefelomtrica ya no puede utilizarse para evaluar la concentracin de partculas en las muestras. En una muestra con una longitud de la trayectoria de medicin de 1 pulgada, las seales de dispersin de luz nefelomtricas comienzan a disminuir en turbidez inferior o igual a 2000 NTU. En este punto, un incremento en la turbidez se traducir en una reduccin de la seal nefelomtrica. Sin embargo, pueden utilizarse otras mediciones para determinar la turbidez de estas muestras. Tres de ellos son mtodos transmitidos, dispersin frontal, y retrodispersin. Las seales transmitida y de dispersin frontal son inversamente proporcionales al aumento de la turbidez y dar una buena respuesta a 4000 NTU. Por encima de 4.000 NTU (cuando se utiliza el paso estndar de 1 pulgada), las seales transmitidas y de dispersin frontal son tan bajos que el ruido instrumental se convierte en un factor importante de interferencia. Por otra parte, las seales de retrodispersin aumentarn proporcionalmente con el aumento de la turbidez. Se determin que mediciones de retrodispersin son altamente eficaces en la determinacin de la turbidez especficamente en el intervalo de 1.000 a 10.000 NTU (y ms alto). Por debajo de 1.000 NTU, los niveles de seal de retrodispersin son muy bajos, y el ruido del instrumento comienza a interferir con las mediciones. Con una combinacin de detectores, ahora se puede medir la turbidez a partir de ultra-baja a niveles muy altos. Vea la Seccin IV de cmo estos detectores trabajan juntos. El uso de la medicin de ultra-alta turbidez tiene muchas aplicaciones. Se utiliza en el control del contenido de grasa en leche, componentes de pintura, tales como dixido de titanio, soluciones de licor en fbricas de pulpa y de procesamiento de papel, y lechadas mineral en operaciones de molienda.. Pgina 11 de 40
Cuando se hacen mediciones de turbidez ultra-alta, la calidad de la celda de muestra tiene un gran efecto sobre la precisin de la medicin. Celdas de muestra que no son perfectamente redondas, ni de espesor constante, estos dos factores tienen un efecto dramtico en particular en la medicin de dispersin de retorno. Para reducir al mnimo los efectos de las aberraciones celda de muestra, una muestra de turbidez ultra-alta debe leerse en varios puntos de rotacin en una sola celda de muestra. Los puntos de rotacin sugeridos son: 0, 90, 180, y 270 grados. Estas cuatro mediciones debern realizarse utilizando la misma metodologa de preparacin de muestras. Las mediciones deben realizarse durante un intervalo de tiempo despus de mezclar con el fin de maximizar la reproducibilidad en la medicin. Todas las medidas deben ser promediadas y este valor usado como turbidez de la muestra. Mediciones de turbidez ultra-alta se usan generalmente como un mecanismo de seguimiento de control de procesos. El usuario debe primero determinar la relacin de la turbidez a diferentes condiciones de corriente de proceso. En la determinacin de esta relacin, se hacen diluciones de la muestra y se mide la turbidez de cada dilucin. Entonces se hace un grfico de turbidez (eje y) frente a cada dilucin correspondiente (eje x). La pendiente de la lnea de mejor ajuste indicar la naturaleza de esta relacin. Si la pendiente es muy grande (mayor que 1), entonces la respuesta es buena y la posibilidad de interferencia es mnima en la medicin. Si la pendiente es pequea (menor a 0,1), entonces las interferencias estn presentes e impactan las mediciones. En este caso, puede necesitarse diluir hasta que la pendiente de la muestra aumente. Por ltimo, si la pendiente es cercana a cero o es negativa, entonces la turbidez es todava demasiado alta y / o las interferencias son demasiado grandes para utilizar las mediciones con precisin. Una vez ms, la muestra tiene que diluirse. El color puede ser una interferencia importante en las mediciones de muy alta turbidez. Una posible solucin a la interferencia del color es diluir la muestra significativamente. Una alternativa a la dilucin de la muestra es determinar la longitud de onda (s) donde la muestra absorbe la luz y a continuacin, realizar una medicin de la turbidez a una longitud de onda alternativa en la que se reduce al mnimo absorbancia de la muestra. El uso de longitudes de onda en el rango de 800 a 860 nm es eficaz, porque la mayora de las sustancias de origen natural no absorben la luz de manera significativa en este rango. La capacidad de hacer mediciones de turbidez a niveles ultra-altos permite la evaluacin fsica simple y precisa de una amplia gama de muestras y procesos. En general, cada proceso ser nico, y debe hacerse un esfuerzo para caracterizar con precisin una muestra y sus respectivos procesos utilizando las tcnicas de monitoreo turbidimtricas. Anlisis slidos tradicionales de turbidez vs slidos en suspensin, por lo general realizados por mtodos gravimtricos, consumen mucho tiempo y son sensibles a la tcnica. Por lo general, se tarda entre dos y cuatro horas para completar este anlisis. Por lo tanto, si se encuentra un problema, a menudo es demasiado tarde para hacer una correccin fcil del proceso. Esto conduce a costosos tiempos de inactividad y reparaciones para corregir el problema. Sin embargo, la turbidez de estas muestras puede utilizarse como un sustituto del anlisis gravimtrico larga. Se necesita establecer una correlacin entre turbidez y slidos suspendidos totales (TSS) de la muestra. Si existe tal correlacin, a continuacin, puede utilizarse un turbidmetro para controlar los cambios de TSS en una muestra, lo que resulta en un anlisis inmediato. El tiempo de respuesta a un cambio en el TSS de un proceso puede ser reducido de horas a segundos con el uso de un turbidmetro. Se ha sido desarrollado un procedimiento para determinar la correlacin entre turbidez y TSS de una muestra. En la determinacin de esta correlacin para una muestra, deben hacerse varias consideraciones a lo largo de todo el procedimiento. Estos criterios son los siguientes: La muestra no debe contener slidos flotando. La muestra debe ser fluida de forma que se convierta en homognea con la mezcla y se pueda diluir con precisin. La muestra debe contener slidos que son representativos de futuras muestras a ensayar. que los mandantes La muestra debe ser bien conocidos. El procedimiento para determinar la correlacin debe ser mayor en el menor perodo de tiempo posible. La muestra debe estar bien mezclada en cada dilucin o medida que se tome. La metodologa de preparacin y medicin de cada dilucin debe ser la misma durante la correlacin y el seguimiento de las muestras o del proceso. La temperatura de la muestra debe ser la misma que en el proceso de inters. Adems, la temperatura de todas las diluciones tambin debe ser la misma cuando se realiza cualquiera de las mediciones de turbidez o en la filtracin de estas muestras para el anlisis gravimtrico. El procedimiento se ha dividido en cuatro etapas, que se resumen a continuacin: 1. Dilucin de la muestra. Varias diluciones de la muestra deben prepararse para cubrir la posible gama de TSS para la muestra dada. Estas diluciones se deben hacer con agua libre de turbidez. La muestra debe mezclarse bien al preparar las soluciones. Las soluciones no acuosas deben utilizar un soluto incoloro, libre de partculas que coincida con las caractersticas qumicas y fsicas de la muestra. Determinacin de slidos suspendidos totales (SST) de cada dilucin de la muestra. Debe hacerse la determinacin gravimtrica de cada una de las diluciones de la muestra. Debe usarse una metodologa consistente a travs de todo el conjunto de muestras.
2.
Pgina 12 de 40
3.
La medicin de la turbidez de cada dilucin. Todas las muestras deben tener la turbidez determinada. Para todas las lecturas de turbidez debe usarse la misma metodologa de preparacin de muestras y de medicin. Por ejemplo: cada muestra se invierte el mismo nmero de veces, el tiempo de espera entre la mezcla y la lectura debe ser constante a travs de los procedimientos, etc. Se determina la correlacin entre las mediciones de turbidez y las gravimtricas de las diluciones. se prepara un grfico en el cual los slidos suspendidos totales en mg / l se muestran en el eje x y la respectiva turbidez se muestra en el eje y. Se puede determinar una relacin de mnimos cuadrados. Los mnimos cuadrados es un mtodo estadstico para verificar la relacin y determinar la turbidez real de una muestra dentro de un cierto grado de precisin. Un coeficiente de correlacin de 0,9 o mayor indica una relacin viable entre turbidez y TSS. Al representar grficamente esta relacin, puede determinarse la sensibilidad de la correlacin a fin de ganar confianza en la correlacin. Cuanto mayor es la pendiente de esta correlacin, mayor es la sensibilidad de la turbidez a los TSS y mejor la correlacin funcionar en la muestra. El mtodo de 8366, muestra un ejemplo del procedimiento.
4.
3.
Pgina 13 de 40
disear un sistema ptico con luz dispersa despreciable (vase la Seccin III). Este fue el curso tomado en el diseo de turbidmetros 2100N, 2100AN, 2100AN IS, 2100N IS, y 2100P. 4. El instrumento tendra una lectura digital directa en unidades NTU. Las ventajas de las pantallas digitales para instrumentacin analtica son la facilidad de uso, la ausencia de errores de lectura, mayor resolucin y precisin. Las pantallas digitales tambin ofrecen al usuario informacin del ruido de muestra y la calidad de lecturas de turbidez baja. Mientras que los instrumentos analgicos podran ser calibrados con escalas no lineales, la seal electrnica suministrada a la pantalla digital tendra que ser lineal si el instrumento fuese a leer directamente en unidades de turbidez. Este requisito tuvo un impacto significativo en el diseo de los turbidmetros de relacin. El instrumento sera capaz de mediciones de turbidez precisas, incluso en muestras muy coloreadas. Un nmero de problemas de turbidez con muestras coloreadas no poda manejarse con un nefelmetro convencional. El color proporciona una interferencia negativa, atenuando la luz incidente y difusa, y la turbidez leda es menor de lo que debera. El efecto fue tan grande an en muestras ligeramente coloreadas que nefelmetros convencionales no podan utilizarse en estas aplicaciones. Desarrollo de turbidmetro de relacin de alto grado de rechazo al color abri muchas nuevas aplicaciones para nefelometra.
5.
Diseo ptico
La configuracin ptica del turbidmetro de relacin clave para varias caractersticas de rendimiento. Entre ellos se encuentran una buena estabilidad, linealidad, sensibilidad, baja luz dispersa y rechazo del color. La Figura 11 muestra el diseo ptico utilizado en los turbidmetros de laboratorio 2100N, 2100AN 2100 AN IS, o Figura 11. Diseo ptico de los turbidmetros de relacin Hach. 2100N IS (2100N no tiene detector de retrodispersin). El 2100P tiene un detector de luz a 90 y uno lineal. El 2100N IS tiene slo un detector a 90 . Los turbidmetros de laboratorio 2100N y 2100AN operan sobre el principio de que la cantidad de luz dispersa de una muestra es proporcional a la cantidad de material en partculas en esa muestra. La luz de una lmpara halgena de tungsteno, operando a una temperatura nominal de color de 2700 K, es recogido por un conjunto de tres lentes de policarbonato. El policarbonato es capaz de soportar las temperaturas extremas de la lmpara. Las lentes estn diseadas para reunir la mayor cantidad de luz posible y la imagen del filamento de la lmpara de la celda. Un filtro azul infrarrojos (IR) en el camino ptico hace que la respuesta de pico del detector a una longitud de onda entre 400 y 600 nanmetros, de acuerdo con directrices de la EPA. Para el 2100AN, puede usarse un filtro de interferencia opcional en lugar del filtro de infrarrojos de modo que las mediciones de turbidez pueden hacerse con luz "casi" monocromtica. Una serie de deflectores en el camino entre las lentes y la celda de muestra, atrapan la luz dispersa por la superficie de la lente, ayudando a evitar que la luz directa llegue a los detectores. Todos excepto el ltimo deflector ms cercano a la celda de muestra estn dimensionados de modo que el custico que rodea a la luz de las Figura 12: Relacin entre dispersin de luz y Turbidez lentes apenas toca los bordes deflectoras. Tambin, el deflector final es de gran tamao de manera que cualquier desalineacin de la viga no causa los bordes de resplandor y aumentar la luz difusa del instrumento. Fotodiodos de silicio en el rea de la muestra detectan cambios en la luz dispersada o transmitida por la muestra. Un gran detector de luz transmitida mide la luz que pasa a travs de la muestra. Un filtro de densidad neutra Pgina 14 de 40
atena la luz que incide sobre este detector y la combinacin est inclinada a 45 grados con respecto a la luz incidente, por lo que las reflexiones de la superficie del filtro y el detector no entran en el rea de la celda de muestra. Un detector de dispersin frontal mide la luz dispersada a 30 grados respecto a la direccin de transmisin. Un detector a 90 desde la direccin de avance mide la luz dispersada por la muestra normal al haz incidente. Este detector est montado fuera del plano formado por el haz de luz y los otros detectores. El ngulo y deflexin para este plano de montaje hacia fuera bloquea la luz dispersa directamente desde los lados de la celda de la muestra durante la percepcin de la luz dispersada por el haz de luz. Las seales procedentes de cada uno de estos detectores se combinan matemticamente para calcular la turbidez de una muestra. El 2100AN contiene un cuarto detector de retrodispersin que mide la luz dispersada a 138 desde la direccin de transmisin. Este detector "ve" la luz dispersada por las muestras muy turbias cuando los otros detectores ya no producen una seal lineal. Tambin se extiende el rango de medicin del turbidmetro hasta 10.000 NTU.
Figura 13. Respuesta de los instrumentos contra las concentraciones de partculas para diferentes geometras pticos.
Figura 14:
Lmparas y detectores son a menudo la principal fuente de ruido y deriva en nefelmetros convencionales y otros instrumentos pticos. El uso de detectores avanzados elimina parte de este problema y el uso de un sistema de relacin compensa los efectos de la lmpara. El valor de la turbidez se obtiene relacionando la seal nefelomtrica contra una suma ponderada de las seales transmitidas y retrodispersa. (A niveles bajos o moderados de turbidez, la seal retrodispersa es insignificante en comparacin con la transmitida; la salida es simplemente la relacin de luz dispersada a 90 a la luz transmitida) Esta relacin, que da a los instrumentos su nombre, es un caracterstica clave de una excelente estabilidad a largo plazo del instrumento. Adems de las fluctuaciones de la lmpara, el principio de proporcin compensa neblina y el polvo en la ptica, as como coeficientes de temperatura de los detectores y amplificadores. Estos detectores, operado en una configuracin de relacin, dan a los instrumentos, un grado de estabilidad que hace innecesaria la calibracin continua. Una caracterstica general de nefelmetros de haz simple es llegar a ser no lineal y, finalmente, "se quedan ciegos" a altos niveles de turbidez, debido a que el aumento de la atenuacin de la luz con el tiempo tiene un efecto mayor que el aumento en la dispersin. Este comportamiento se ejemplifica en la Figura 13 por la curva marcada "C". Podra esperarse una relacin simple de luz dispersa a transmitida extendera la gama de linealidad porque los rayos atraviesan distancias ms o menos iguales a travs de la muestra y deberan ser afectados por igual por la atenuacin, como es el caso para la atenuacin por el color. Sin embargo, a altos niveles de turbidez, luz que llega a los detectores es probable que se haya dispersado ms de una vez. Esta dispersin mltiple acta reduciendo la distancia recorrida por los rayos dispersos, mientras que slo puede aumentar la distancia recorrida por los rayos transmitidos. La figura 14 muestra una ruta directa a lo largo de la Lnea 1 que puede tomarse por un rayo dos veces disperso. El resultado es que la luz transmitida es ms atenuada que la luz dispersa alta turbidez, haciendo que la respuesta del instrumento sea no lineal de la curva A en la Figura 13. Los turbidmetros 2100N, 2100AN y 2100AN IS utilizan el detector de dispersin frontal para linealizar la respuesta del instrumento a altas turbiedades. La seal de este detector se combina con la seal transmitida en el denominador de la relacin. En turbideces inferiores, la dispersin frontal es insignificante en comparacin con la luz transmitida, de modo que el detector de dispersin frontal no tiene ningn efecto. En turbideces mayores, el aumento de la dispersin hacia adelante slo compensa la atenuacin del haz transmitido, y la respuesta del instrumento se cambia de la de la curva A en la Figura 13 a la forma lineal ideal que se muestra como Curva B. Por la eleccin adecuada de la visin de ngulo de dispersin y la magnitud de la correccin, el instrumento se ha linealizado a lo largo de su gama completa, como se requiere para la lectura digital directamente en NTU. La baja luz difusa caracterstica es importante para la medicin exacta de las muestras con turbidez baja. La especificacin de la luz directa del 2100N, 2100AN, 2100AN IS, 2100N IS y los turbidmetros 2100P (menor a 0,01 NTU para los modelos de laboratorio y 0,02 NTU para el 2100P) es significativamente mejor que el turbidmetro Hach 2100A (menos de 0,04 NTU). La baja luz parsita se consigue montando el detector de 90 por encima del plano horizontal del deflector adecuado como se muestra en la figura 15. La figura muestra una seccin transversal a travs del centro de la celda de muestra mirando a lo largo del eje del haz de luz. Observe que el detector todava detecta la luz dispersa a 90 del haz incidente. Los deflectores estn dispuestos de modo que el detector ve el volumen de la muestra Pgina 15 de 40
atravesada por el haz incidente, pero no puede ver la pared del fondo de la celda de muestra por encima del eje ptico. La razn de esta disposicin se ilustra en la Figura 14. Luz difusa generalmente es causada por la dispersin y la reflexin de las paredes de la celda de muestra. Ni solos reflexiones ni dispersin en una sola superficie causan la luz difusa apreciable para alcanzar el detector en la figura 14, pero dos mecanismos posibles se muestran. La primera muestra un evento de dispersin en la entrada del haz que desva un rayo a lo largo de la lnea 1 hacia el detector en el que se dispersa de nuevo al salir y alcanza el detector. El segundo camino a lo largo de la Lnea 2 comienza con la dispersin en la entrada del haz seguido de una reflexin de la pared celular posterior. El segundo mecanismo es, con mucho, la mayor fuente de luz parsita con un detector en el plano, debido a las reflexiones (4%) son mucho ms intensa que la dispersin (0,1%) en las paredes celulares. El detector fuera de plano que se muestra en la Figura 15 no ve estas reflexiones y la luz difusa se elimina en Figura 15. El detector del Turbidmetro Ratio est fuera del plano para minimizar la gran medida. luz parsita.
Diseo Electrnico
El instrumento tiene diferentes algoritmos de lectura: turbidez de relacin y turbidez no relacionada. (El algoritmo de diseo es para los turbidmetros ms recientes). Cada uno se describe en las siguientes secciones. Turbidez de Relacin (Turbidmetro a Cuatro puntos de relacin*). El algoritmo de calibracin a cuatro puntos se define como: T = I90 / (d0It + d1Ifs +d2Ibs + d3I90) donde: T = turbidez en unidades NTU (0-10.000) d0, d1, d3, d2 = coeficientes de calibracin I90 = corriente del detector de 90 It = corriente transmitida del detector Ifs = Corriente del detector de dispersin Ibs = Corriente del detector de retrodispersin * EE.UU. Patente 5506679 Turbidez No Relacionada: El algoritmo no-relacionado se define como: T = a0 I90 donde: T = turbidez en unidades NTU (0 a 40) a0 = constante de calibracin I90 = corriente detector a noventa grados
Aplicaciones
Adems de proporcionar estabilidad, la configuracin de relacin es la base para el rechazo de color del instrumento. Debido a que la luz transmitida y la luz 90 de dispersin atraviesan caminos casi equivalentes a travs de la muestra, que se ven afectados por igual por la atenuacin del color. Por lo tanto, cuando se toma la relacin, efectos de color se reducen en gran medida. Esta ventaja ha abierto muchas nuevas aplicaciones para la medicin de la turbidez, en particular en las industrias de alimentos y bebidas donde los productos a menudo son coloreados y la apariencia esttica es importante. La Figura 16 compara el efecto de color de la muestra en una turbidmetro de relacin para el mismo efecto en un instrumento convencional. En ambos casos, el instrumento se calibr usando suspensiones de formacina en agua desionizada. Se
Figura 16.
Una comparacin de la respuesta turbidmetro convencional y de relacin de formacina con turbidez en vinos y cervezas.
Pgina 16 de 40
aadieron cantidades conocidas de formacina a la cerveza (amarillo), un vino rosado (rosa) y un vino de Borgoa (rojo oscuro). Lo ideal sera obtener los mismos resultados en las soluciones de color como en agua. Los resultados del instrumento convencional son muy bajos, como es de esperar en cualquier detector nefelomtrico individual. A mayor color en la solucin, ms grave el error. A nivel de 100 NTU, la cerveza, rosa y burdeos leer 60, 8 y 4 NTU, respectivamente, en el nefelmetro convencional. El turbidmetro de relacin da resultados mucho ms ideal con slo aproximadamente el 10% bajo del promedio. Tenga en cuenta que la compensacin de color no es del todo exacta, incluso con el turbidmetro de relacin. La diferencia residual se atribuye principalmente a las diferencias en la distribucin espectral de la luz dispersa y transmitida. La Figura 17 muestra la respuesta de un Figura 17. Comparacin de la respuesta del turbidmetro turbidmetro de relacin y convencional para convencional y de relacin a la turbidez de carbn carbono coloidal en agua, cerveza y burdeos. En coloidal en agua, vinos y cervezas. este caso, no hay ninguna sensibilidad ideal porque el material productor de turbidez no es formacina. Hay tres principales puntos de inters en estos datos. En primer lugar, el turbidmetro de relacin es mucho ms sensible que el convencional a las partculas de carbono. En segundo lugar, los resultados del turbidmetro de relacin son casi independientes del color, mientras que los resultados con turbidmetro convencionales varan mucho con el color de la muestra. En tercer lugar, el turbidmetro de relacin da resultados que son lineales con la concentracin de carbono. El instrumento convencional comienza con una respuesta lineal a bajas concentraciones, pero se aplana e incluso disminuye a niveles ms altos. Por lo tanto, las figuras 16 y 17 ilustran caractersticas de respuesta muy mejoradas cuando se compara una turbidmetro de relacin con uno convencional para medir la turbidez de las muestras que se caracteriza por soluciones y / o partculas que absorben la luz.
Conclusin
Se han alcanzado los objetivos de rendimiento establecidos para un diseo turbidmetro ratio. El diseo del sistema y la relacin ptica de estos turbidmetros tiene varias ventajas. 1. En nefelmetros convencionales, como con otros instrumentos pticos, lmparas y detectores suelen ser la mayor fuente de ruido y la deriva. El uso de fotodetectores de silicio avanzadas elimina problemas con el detector. El uso de un sistema de relacin compensa los efectos de la lmpara como el envejecimiento, la bruma y la acumulacin de polvo en el sistema ptico, y coeficientes de temperatura de los detectores y amplificadores. Debido a que el instrumento tiene una estabilidad a largo plazo, no es habitualmente necesaria estandarizacin. 2. El sistema de deflexin del detector de 90 ofrece un excelente rechazo luz difusa. Esto permite una mayor precisin en las mediciones de muy baja turbidez. 3. El detector de dispersin frontal ayuda a proporcionar una respuesta lineal en un amplio rango sin sacrificar la sensibilidad en los rangos inferiores. La respuesta lineal permite al analista a utilizar un lector digital con las conocidas ventajas de facilidad de uso, la ausencia de errores de lectura, mayor resolucin y caracterizacin del ruido de las muestras. 4. El sistema de relacin tambin es la base de la capacidad de rechazo de color del instrumento. Debido a que la luz transmitida y la luz 90 de dispersin atraviesan caminos casi equivalentes a travs de la muestra, que se ven afectados por igual por la atenuacin de color, ya sea disuelto o en partculas. Cuando se toma la relacin, los efectos de color por lo tanto se reducen en gran medida. 5. El detector de retrodispersin muestra una respuesta lineal a altas turbiedades. Esto permite la medicin de turbidez NTU en el rango 4-10000. Aunque el 2100N, 2100AN, 2100AN IS, 2100N IS y los turbidmetros 2100P fueron diseados para satisfacer las necesidades de la industria del agua, sus capacidades se generan muchas nuevas aplicaciones industriales. Las figuras 18, 19 y 20 muestran la 2100AN, 2100N y los turbidmetros 2100P. Figura 18. Laboratorio Turbidmetro 2100AN Figura 19. 2100N Turbidmetro de Laboratorio. La Figura 20. 2100P turbidmetro porttil.
Pgina 17 de 40
Pgina 18 de 40
Pgina 19 de 40
La gravedad de este problema y la confusin asociada a ella se refiere tanto a los usuarios y fabricantes de nefelmetros y turbidmetros. Los autores de los Standard Methods (19 edicin) han tratado de minimizar la variacin especificando los componentes crticos de un instrumento para la medicin turbidimtrica: 1. Fuente de luz: lmpara de filamento de tungsteno que funciona a una temperatura de color entre 2200 y 3000 K. 2. Distancia recorrida por la luz incidente y la dispersada en el tubo de muestra : no superior a 10 centmetros. 3. ngulo de aceptacin para el detector de luz: centrada a 90 de la trayectoria de la luz incidente y que no exceda 30 desde 90. El detector y los sistemas de filtrado, si existen, debern tener una respuesta de pico espectral entre 400 y 600 nm. La tolerancia establecida en estas especificaciones todava permite una variabilidad sustancial entre instrumentos. Una mejora de las mediciones entre diferentes estaciones de turbidez se puede lograr mediante el uso del misma modelo de instrumento en cada estacin.
Turbidmetros De Proceso
La turbidimetra de proceso presenta desafos nicos. La operacin debe ser continua. Las seales de control deben estar disponibles inmediatamente para ofrecer retroalimentacin del proceso. El instrumento en s debe tener un amplio rango dinmico y ser lo ms libre de mantenimiento posible. Ingenieros de Hach han abordado estas limitaciones de diseo de varias maneras. Nuestras principales preocupaciones eran eliminar el uso de una celda de muestra y reducir al mnimo o eliminar el contacto entre la muestra y los componentes pticos del instrumento. Diseo de rango bajo La Figura 21 es una representacin grfica de la 1720D Turbidmetro Hach, diseado especficamente para mejorar el rechazo de burbujas y lecturas de turbidez altamente precisas en los rangos inferiores. En el 1720D, las burbujas se eliminan antes de entrar en la cmara primaria del cuerpo mediante una red de deflectores que obligan a la muestra a travs de cmaras expuestas a la atmsfera. Una distancia mayor entre la red de deflectores y la cmara de medicin en este modelo causa menor probabilidad de burbujas atrapadas elevndose hacia la cmara de medicin y de produccin de fluctuaciones de lectura. El Turbidmetro 1720D es tambin "sensor inteligente". Cuenta con un microprocesador y todos los aparatos electrnicos de apoyo y componentes pticos alojados en un cabezal de sensor. El instrumento enva los datos a otros dispositivos vinculados en red a travs de un mdulo de comunicaciones conocido como el mdulo de interfaz AquaTrend mediante un protocolo digital fieldbus protocol llamado LonWorks. Este enlace de comunicacin entre los sensores inteligentes y la interface AquaTrend permite a los clientes aadir o eliminar Figura 21. Diseo del Turbidmetro 1720D Hach de proceso. dispositivos (instrumentos) y crear una topologa de red especfica a sus necesidades de aplicacin. La interfaz AquaTrend puede monitorear y controlar hasta ocho sensores de turbidez de una sola vez. Este enfoque de sistema en red proporciona la capacidad de instalar mltiples mdulos de interfaz AquaTrend para el monitoreo remoto de diferentes lugares. Los clientes pueden colocar el sensor 1720D hasta 400 metros (300 pies) de distancia del AquaTrend Interface. Las funciones de la pantalla del turbidmetro 1720D son controlados a travs de una interfaz independiente, basada en mens de usuario grfica incorporada en el mdulo AquaTrend . Los usuarios pueden visualizar los datos desde y comunicarse con hasta ocho turbidmetros. Pantallas de men de fcil solicitar al usuario para la calibracin, alarma y grabado configuracin, configuracin de red, funciones de seguridad, visualizar la configuracin y las opciones diagnsticas.
Pgina 20 de 40
Mens fciles de usar del mdulo El AquaTrend minimizar el presionar botones y la entrada de los cdigos alfanumricos que usuarios experimentados con turbidmetros modelos antiguos. El mdulo se encuentra en un recinto NEMA 4X/IP66 (interior) y cuenta con un teclado de fcil acceso. La 1720D tiene una mejora de rendimiento del 30 por ciento de respuesta en comparacin con instrumentos similares. A una velocidad de flujo de 500 ml / min, tiempo de respuesta promedio de la 1720D es de 3,5 minutos. Este tiempo de respuesta ms rpido es el resultado de un menor volumen de muestra (aproximadamente 0,9 L). Diseo avanzado de ojo de la cerradura del 1720D reduce la luz difusa, ofrecen informacin ms exacta (2% 0-40 NTU y 5% 40 a 100 NTU) lecturas. Combinado con el diseo de la nueva trampa de burbujas, el instrumento reduce significativamente aire arrastrado en la muestra, lo que resulta en un menor nmero de fluctuaciones de lectura de la turbidez. Diseo Rango-Amplio La figura 22 representa otro enfoque para procesar turbidimetra. El Surface Scatter Mtodo de medicin utilizado en turbidmetros 6/SE (Medio Ambiente Severo) Surface Scatter Hach Surface Scatter 6 y est diseado para la medicin de amplio rango. Este diseo patentado elimina completamente el contacto entre la muestra y los componentes pticos del instrumento. La fuente de luz y el detector estn montados sobre el cuerpo del turbidmetro, aislar los componentes pticos de la muestra para proporcionar virtualmente libre de mantenimiento el funcionamiento. Muestra se pone en el centro del cuerpo, el aumento de la parte superior y desbordante un vertedero en el desage. El caudal se controla para permitir que el desbordamiento para formar una superficie pticamente plana. El haz de luz se centra en la superficie de la muestra en un ngulo agudo. Figura 22. Diseo del Turbidmetro 6 Partculas de luz sorprendentes dentro de la zona iluminada se dispersaron, Hach- dispersin superficial. refractan o reflejan como se muestra. La luz no se dispersa ya sea refractada hacia abajo el cuerpo del instrumento y se absorbe o se refleja fuera de la superficie de la muestra y se absorbe dentro del recinto. La luz dispersada es detectada por el fotodetector y la seal desde el detector se alimenta a la unidad de control. A medida que aumenta la turbidez, la cantidad de muestra iluminada por el haz disminuye. En efecto, este ajusta la longitud de trayectoria de la luz para compensar los niveles de turbidez mayores, permitiendo que el instrumento para alcanzar un rango de respuesta extremadamente amplia de casi seis dcadas, 0,01 a 9999 NTU. Para complementar las ventajas de la ptica aislados en la reduccin de los requisitos de mantenimiento, fontanera gran dimetro evita la obstruccin en el seguimiento de las muestras de alto contenido en slidos. El cuerpo del turbidmetro inclinada sirve como una trampa para los slidos sedimentables que podran interferir con la medicin y el desage en la parte inferior del instrumento permite la purga peridica de los slidos acumulados. Por muy alto contenido de slidos, el drenaje inferior puede ser operado en la posicin abierta y el flujo aument a purgar continuamente slidos del instrumento. Turbidmetro a Retrolavado El exceso de lavado a contracorriente por ciclo puede desperdiciar miles de galones de agua. Diseado especficamente para supervisar lavado a contracorriente lecho de filtro, el Turbidmetro retrolavado (Figura 23) mide la transmitancia, y es capaz de operar en una amplia gama de turbidez. El sensor est diseado para ser montado directamente en la bandeja de agua de lavado, proporcionar una respuesta rpida para lavar la claridad del agua. La medicin se hizo centrndose la salida de un diodo emisor de luz (LED) a travs de la muestra a medida que fluye a travs del centro del conjunto del sensor. La luz transmitida a travs de la muestra se mide mediante un fotodetector. Slidos en suspensin absorben y dispersan parte de la luz, lo que reduce la transmitancia. Al comienzo del ciclo, la transmisin de la luz ha sido estandarizada a leer 100% en el agua limpia y filtrada se utiliza para lavar los filtros. Transmisin de la luz cae rpidamente en forma de slidos atrapados por los medios de filtro se liberan en el agua de lavado. Como slidos son lavados, el agua de lavado efluente despeja y aumenta la transmitancia. Al hacer referencia a agua de lavado claro y de deteccin cuando la limpieza del filtro es efectivamente completa, el ciclo de lavado se puede mantener a la duracin ms corta prctica, lograr la eficiencia mxima de lavado del filtro.
Pgina 21 de 40
Contents I. Introduction and Definition 4 Theory of Light Scattering 4 History 5 Turbidity Standards5 Nephelometry 7 II. Modern Instruments 9 Light Sources 9 Detectors 9 Optical Geometry 10 III. Practical Aspects of Turbidity Measurement 11 Instrument Calibration and Verification 11 Stray Light 11 Ultra-Low Measurements 12 Instrument Accuracy in the Low Measurement Range 13 Characteristics of Ultrapure Water 14 Ultra-high Turbidity Measurement 14 Turbidity vs. Suspended Solids 15 IV. Advanced Measurement Techniques: Ratio Instrument Design 16 Introduction 16 Design Objectives 16 Optical Design 17 Electronic Design 18 Applications 20 Conclusion 21 Advanced Techniques, Continued: Filters 21 V. Proper Measurement Techniques 22 Variation Among Instruments 23 VI. Innovative Approaches To Process Turbidity Measurement 23 Process Turbidimeters 24 Low-Range Design 24 Wide-Range Design 24 Backwash Turbidimeter 25
Pgina 22 de 40
I. Introduction and Definition An important water quality indicator for almost any use is the presence of dispersed, suspended solids particles not in true solution and often including silt, clay, algae and other microorganisms, organic matter and other minute particles. The extent to which suspended solids can be tolerated varies widely, as do the levels at which they exist. Industrial cooling water, for example, can tolerate relatively high levels of suspended solids without significant problems. In modern high pressure boilers, however, water must be virtually free of all impurities. Solids in drinking water can support growth of harmful microorganisms and reduce effectiveness of chlorination, resulting in health hazards. In almost all water supplies, high levels of suspended matter are unacceptable for aesthetic reasons and can interfere with chemical and biological tests. Suspended solids obstruct the transmittance of light through a water sample and impart a qualitative characteristic, known as turbidity, to water. The American Pub lic Health Association (APHA) defines turbidity as an expression of the optical property that causes light to be scattered and absorbed rather than transmitted in straight lines through the sample.1 Turbidity can be interpreted as a measure of the relative clarity of water. Turbidity is not a direct measure of suspended particles in water but, instead, a measure of the scattering effect such particles have on light.
Theory of Light Scattering Very simply, the optical property expressed as turbidity is the interaction between light and suspended particles in water. A directed beam of light remains relatively undisturbed when transmitted through absolutely pure water, but even the molecules in a pure fluid will scatter light to a certain degree. Therefore, no solution will have a zero turbidity. In samples containing suspended solids, the manner in which the sample interferes with light transmittance is related to the size, shape and composition of the particles in the solution and to the wavelength (color) of the incident light. A minute particle interacts with incident light by absorbing the light energy and then, as if a point light source itself, reradiating the light energy in all directions. This omnidirectional re-radiation constitutes the scattering of the incident light. The spatial distribution of scattered light depends on the ratio of particle size to wavelength of incident light. Particles much smaller than the wavelength of incident light exhibit a fairly symmetrical scattering distribution with approximately equal amounts of light scattered both forward and backward (Figure 1A). As particle sizes increase in relation to wavelength, light scattered from different points of the sample particle create interference patterns that are additive in the forward direction. This constructive interference results in forward-scattered light of a higher intensity than light scattered in other directions (Figures 1B and 1C). In addition, smaller particles scatter shorter (blue) wavelengths more intensely while having little effect on longer (red) wavelengths. Conversely, larger particles scatter long wavelengths more readily than they scatter short wavelengths of light. 1 Standard Methods for the Examination of Water and Wastewater, published by APHA, AWWA and WPCF, 17th edition, 1989, pages 2-12. Figure 1. Angular patterns of scattered intensity from particles of three sizes. (A) small particles, (B) large particles, (C) larger particles. From Brumberger, et al, Light Scattering, Science and Technology , November, 1968, page 38. Particle shape and refractive index also affect scatter distribution and intensity. Spherical particles exhibit a larger forward-to-back scatter ratio than coiled or rodshaped particles. The refractive index of a particle is a measure of how it redirects light passing through it from another medium such as the suspending fluid. The particles refractive index must be different than the refractive index of the sample fluid in order for scattering to occur. As the difference between the refractive indices of suspended particle and suspending fluid increases, scattering becomes more intense. The color of suspended solids and sample fluid are significant in scattered-light detection. A colored substance absorbs light energy in certain bands of the visible spectrum, changing the character of both transmitted light and scattered light and preventing a certain portion of the scattered light from reaching the detection system. Light scattering intensifies as particle concentration increases. But as scattered light strikes more and more particles, multiple scattering occurs and absorption of light increases. When particulate concentration exceeds a certain point, detectable levels of both scattered and transmitted light drop rapidly, marking the upper limit of measurable turbidity. Decreasing the path length of light through the sample reduces the number of particles between the light source and the light detector and extends the upper limit of turbidity measurement. History Practical attempts to quantify turbidity date to 1900 when Whipple and Jackson2 developed a standard suspension fluid using 1000 parts per million (ppm) of diatomaceous earth in distilled water. Dilution of this reference suspension resulted in a series of standard suspensions used to derive a ppm-silica scale for calibrating contemporary turbidimeters.
Jackson applied the ppm-silica scale to an existing turbidimeter called a diaphanometer, creating what became known as the Jackson Candle Turbidimeter. Consisting of a special candle and a flat-bottomed glass tube, this turbidimeter was calibrated by Jackson in graduations equivalent to ppm of suspended silica turbidity. Measurement was made by slowly pouring a turbid sample into the tube until the visual image of the candle flame, viewed from the open top of the tube, diffused to a uniform glow (Figure 2). Visual image extinction occurred when the intensity of the scattered light equaled that of transmitted light. The depth of the sample in the tube was then read against the ppm-silica scale, and turbidity was referred to in terms of Jackson turbidity units (JTU). However, standards were prepared from materials found in nature, such as Fullers earth, kaolin and stream-bed sediment, making consistency in formulation difficult to achieve. Turbidity Standards In 1926, Kingsbury and Clark3 developed formazin, an almost ideal suspension for turbidity standards prepared by accurately weighing and dissolving 5.00 g of hydrazine sulfate and 50.0 g of hexamethylenetetramine in one liter of distilled water (Figure 3). The solution develops a white turbidity after standing at 25 C for 48 hours. Under ideal environmental conditions of temperature and light, this formulation can be prepared repeatedly with an accuracy of 1%. Formazin is the only known turbidity standard that can be repeatably made from traceable raw materials. All other standards, both alternate and secondary, must be controlled against formazin. Primary turbidity standards prepared by direct synthesis of formazin suspensions have been accepted almost universally by the water industry and other associated industries.
Figure 2. Jackson Candle Turbidimeter. Figure 3. Synthesis of formazin. 2M.I.T. Quarterly, vol. 13, 1900, page 274. 3Kingsbury, Clark, Williams and Post, J. Lab. Clin. Med., Vol. 11, 1926, page 981. Formazin has several desirable characteristics that make it an excellent turbidity standard. First, it can be reproducibly prepared from assayed raw materials. Second, the physical characteristics make it a desirable light-scatter calibration standard. The formazin polymer consists of chains of several different lengths, which fold into random configurations. This results in a wide array of particle shapes and sizes ranging from less than 0.1 to over 10 microns. Studies of the particle distribution indicate irregular distributions among different lots of standards, but the overall statistical nephelometric scatter is very reproducible. This wide array of particle sizes and shapes analytically fits the wide possibility of particle sizes that are found in real-world samples. Due to the statistical reproducibility of the nephelometric scatter of white light by the formazin polymer, instruments with traditional tungsten filament white light optical designs can be calibrated with a high degree of accuracy and reproducibility. The randomness of particle shapes and sizes within formazin standards yields statistically reproducible scatter on all makes and models of turbidimeters. Due to formazins reproducibility, scattering characteristics and traceability, turbidimeter calibration algorithms and performance criteria should be universally based on this standard. In 1955, the relationship of parts per million silica concentration and turbidity had been abandoned and the 10th and subsequent editions of Standard Methods described turbidity in terms of light scattering due to suspended matter. The terms ppm units and silica scale were discontinued; units adopted were simply turbidity units. When formazin was accepted as the primary reference standard, units of turbidity measurement became known as formazin turbidity units (FTU). Formazin was first adopted by the APHA and American Water Works Association (AWWA) as the primary turbidity standard material in the 13th edition of Standard Methods for the Examination of Water and wastewater. The USEPA defines primary standards slightly differently, using the term to mean standards that USEPA has determined can be used for reporting purposes. The subject of standards in turbidimetric measurement is complicated partly by the variety of types of standards in common use, and partly by the differences in definition used by organizations such as the USEPA and by APHA and AWWA in Standard Methods. In the 19th edition of Standard Methods, clarification was made in defining primary and secondary standards. Standard Methods defines a primary standard as one that is prepared by the user from traceable raw materials, using precise methodologies under controlled environmental conditions. In turbidity, the only standard that can be strictly defined as primary is formazin that has been prepared by the user on the bench. Standard Methods now defines secondary standards as those standards a manufacturer (or an independent testing organization) has certified to give instrument calibration results equivalent (within certain limits) to those obtained when an instrument is calibrated with user-prepared formazin standards. Various secondary standards available for calibration include commercial stock suspensions of 4000 NTU formazin, stabilized formazin suspensions, and commercial suspensions of microspheres of styrene divinylbenzene copolymer.
Calibration verification standards supplied by instrument manufacturers, such as sealed sample cells filled with latex suspension or with metal oxide particles in a polymer gel, are used to verify instrument performance between calibrations and are not to be used in performing instrument calibrations. If there is a discrepancy in the accuracy of a standard or an instrument, the primary standard (i. e. user-prepared formazin) is to be used to govern the validity of the issue. In turbidity, formazin is the only recognized true primary standard and all other standards are traced back to formazin. USEPA definitions differ from those in Standard Methods. Currently, the USEPA designates user-prepared formazin, commercial stock formazin suspensions, stabilized formazin suspensions (StablCal) and commercial styrene divinylbenzene suspensions (sometimes referred to as alternative standards) as primary calibration standards and usable for reporting purposes. The term secondary is used by the USE PA for those standards that are used only to check or verify calibrations. Under this definition, primary does not have anything to do with traceability, only to acceptability for USEPA reporting purposes. This usage depends on the design of the standard. Under the USEPA definition, secondary standards, once their values are determined versus primary formazin, are used to verify the calibration of a turbidimeter. However, these standards are not to be used for calibrating instruments. Examples of these standards include the metal oxide gels, latex suspensions, and any non-aqueous standards that are designed to monitor calibrations on a day-to-day basis. StablCal Stabilized Formazin Turbidity Standards A relatively new turbidity standard has been developed for use in calibrating or verifying the performance of any turbidimeter. StablCal Turbidity Standards contain the same light scattering polymer as traditional formazin primary turbidity standards. By using a different matrix, the formazin polymer in St ablCal Standards is stabilized, and will not deteriorate over time as is the case with traditional low turbidity formazin standards. Due to this enhanced stability, StablCal Standards of any concentration ranging up to 4000 NTU can be manufactured and packaged in ready-to-use formats. StablCal Turbidity Standards have many advantages over traditional formazin and other secondary turbidity standards. First, StablCal Standards are stable for a minimum of two years. Figure 5 (p. 8) displays the stability of StablCal Standards of three different concentrations 2.0, 10.0, and 20.0 NTU. The stability of these standards is independent of concentration. Second, StablCal Standards are prepared at specific concentrations, eliminating the tedious and techniquesensitive preparation through volumetric dilutions. Third, StablCal Standards have the same particle size distribution as formazin and they can be directly substituted for formazin. Thus a StablCal Standard has a defined concentration that is independent of any instrumentation. Figure 6 (p. 8) demonstrates this comparable performance of the StablCal Standards to traditional formazin standards in the 1 to 5 NTU range on a wide array of turbidimeters. Last, StablCal Standards can be repeatably prepared fr om traceable raw materials, and can be considered primary standards. The nature of the matrix of StablCal Standards has also helped to reduce the potential health risks that are associated with traditional formazin standards. Components in this matrix effectively scavenge any trace hydrazine from the standard. The hydrazine concentration is reduced to levels that are below analytical detection limits. Hydrazine levels in StablCal Standards have been reduced by at least three orders of magnitude over those in traditional formazin standards of equal turbidity. Since the StablCal Standards are pre-made, the only user preparation required is to thoroughly mix the standards before use. This eliminates exposure to the standard, reduces potential to contaminate the standard, and saves time that would otherwise be spent in preparing these standards by volumetric dilution. Nephelometry Historically, the need for precise measurements of very low turbidity in samples containing fine solids demanded advancements in turbidimeter performance. The Jackson Candle Turbidimeter presented serious practical limitations because it could not measure turbidity lower than 25 JTU, was somewhat cumbersome, and was dependent on human judgment to determine the exact extinction point. In addition, because the light source in the Jackson instrument was a candle flame, incident light emitted was in the longer wavelength end of the visible spectrum (yellow-red) where wavelengths are not scattered as effectively by small particles. For this reason, the instrument was not sensitive to very fine particle suspensions. (Very fine silica will not produce a flame image extinction in a Jackson Candle Turbidimeter.) The Jackson Candle Turbidimeter was also incapable of measuring turbidity due to black particles such as charcoal because light absorption was so much greater than light scattering that the field of view became dark before enough sample could be poured into the tube to reach an image extinction point. Several visual extinction turbidimeters were developed with improved light sources and comparison techniques, but human judgment errors contributed to a lack of precision. Photoelectric detectors, sensitive to very small changes in
light intensity, became popular to measure the attenuation of transmitted light through a fixed-volume sample. The instruments provided much better precision under certain conditions, but still were limited in their ability to measure high or extremely low turbidity. At low scattering intensities, the change in transmitted light, viewed from a coincident view, was so small that it is virtually undetectable by any means. Typically, the signal was lost in the electronic noise. At higher concentrations, multiple scattering interfered with direct scattering. The solution to this problem was to measure the light scattered at an angle to the incident light beam and then relate this angle-scattered light to the samples actual turbidity. A detection angle of 90 is considered to be very sensitive to particle scatter. Most modern instruments measure 90 scatter (Figure 4); these instruments are called nephelometers, or nephelometric turbidimeters, to distinguish them from generic turbidimeters, which measure the ratio of transmitted to absorbed light. However, its characteristics are affected by environmental conditions, particularly humidity. The solution to this problem was to measure the light scattered at an angle to the incident light beam and then relate this angle-scattered light to the samples actual turbidity. A detection angle of 90 is considered to be very sensitive to particle scatter. Most modern instruments measure 90 scatter (Figure 4); these instruments are called nephelometers, or nephelometric turbidimeters, to distinguish them from generic turbidimeters, which measure the ratio of transmitted to absorbed light. Because of nephelometrys sensitivity, precision and applicability over a wide particle size and concentration range, the nephelometer has been adopted by Standard Methods as the preferred means for measuring turbidity. Likewise, the preferred expression of turbidity is in nephelometric turbidity units (NTU). The U.S. Environmental Protection Agencys publication, Methods for Chemical Analysis of Water and Wastes, also specifies the nephelo - metric method of analysis for turbidity measurement. To distinguish between turbidity derived from the nephelometer and visual methods, results from the former are expressed as NTUs and from the latter as JTUs (1 JTU = 4 NTUs). In addition, the terms FNU (formazin nephelometric unit) and FAU (formazin attenuation unit) are used. FNU is a unit that applies to nephelometric measurement and FAU refers to a transmitted (or absorbed) measurement. However, NTUs, FTUs, FNUs and FAUs are all based on the same formazin primary standard. II. Modern Instruments Today, many methods exist for the determination of water contaminants, yet turbidity measurement is still important because it is a simple and undeniable indicator of water quality change. A sudden change in turbidity may indicate an additional pollution source (biological, organic or inorganic) or may signal a problem in the water treatment process. Modern instruments are required to measure both extremely high and extremely low turbidity levels over an extreme range of sample particulate sizes and composition. An instruments capability to measure a wide turbidity range is dependent on the instruments design. The following sections discuss three critical design components of a nephelometer (the light source, scattered light detector and optical geometry), and how differences in these components affect an instruments turbidimetric measurement. Most measurements are in the range or 1 NTU and lower. This requires instrument stability, low stray light, and excellent sensitivity. Light Sources While many types of light sources are used today in nephelometers, the most common is the tungstenfilament lamp. A lamp of this type has a wide spectral output and is rugged, inexpensive and dependable. Specific lamp output is often quantified in terms of the lamps color temperature the temperature at which a perfect black body radiator must be operated to produce a certain color. An incandescent lamps color temperature and, therefore, spectral output is a function of the lamps operating voltage. Stable incandescent lamp output requires a well -regulated power supply. Monochromatic or narrow band sources can be used for nephelometric applications when specific particle types are present in the sample or when a well-characterized light source is necessary. An example of such a light source is the light emitting diode (LED). LEDs emit light in a narrow band compared to an incandescent source (Figure 7). Because they are more efficient than incandescent lamps at producing visible light, their power requirements for a given intensity are much lower. Application of these narrow band light sources is expanding. Other light sources less frequently used in nephelometric instrumentation include lasers, mercury lamps (discharge lamps) and various lamp/filter combinations. For reporting purposes, the EPA requires the use of an instrument with a tungsten-filament lamp operated at a color temperature in the range of 2200 to 3000 K. In the European Community, the ISO light requirement is an instrument with an incident light output of 860 nm and a spectral bandwidth of less than 60 nm. Tungsten light sources are more sensitive to small particles but sample color typically interferes; instruments with an 860 nm output are not as sensitive to small particles but are not likely to have color interference. Detectors When the imposed light signal has interacted with the sample, its response must then be detected by the instrument. There are four types of detectors presently used in nephelometers: the photomultiplier tube, the vacuum photodiode, the silicon photodiode, and the cadmium sulfide photoconductor. These detectors differ in their response to a particular wavelength distribution (Figure 8). Photomultipliers used in nephelometric instrumentation have peak spectral sensitivity in the near ultraviolet and blue end of the visible spectrum. To maintain good stability, they require a well-regulated high voltage power supply. A vacuum photodiode generally exhibits a spectral response similar to that of a photomultiplier and is somewhat more stable than the photomultiplier.
Figure 7. Typical spectral characteristics for a tungsten filament lamp at three color temperatures, a 560-nm light emitting diode, a He/Ne laser, and an 860 nm ISO 7027 compliant LED.
Figure 8. Typical spectral response characteristics of four photodetectors Silicon photodiodes generally have a peak spectral sensitivity in the visible red region or the near infrared. The cadmium sulfide photoconductor has a peak spectral response somewhere between that of the photomultiplier and the silicon photodiode. Both the spectral distribution of the source and the spectral response of the detector are key elements in the performance of a nephelometer. Generally, for a given detector, when the incident light source is shorter in wavelength, the instrument is more sensitive to smaller particles. Conversely, when the light source is longer in wavelength, the instrument is more sensitive to relatively larger particles. An instruments detector affects response in a similar way. Because photomultiplier and vacuum photodiode tubes are extremely sensitive in the ultraviolet and blue (short wavelength) regions of the spectrum, a nephelometer using a polychromatic light source and these detection components is more sensitive to relatively small particles. A silicon photodiode detector peaks in spectral response at longer wavelengths and is more sensitive to relatively larger particles. In an actual instrument, the source/detector combination defines the effective spectral characteristics of the instrument and the manner in which it will respond to a sample. Figure 9 depicts the spectral characteristics of an instrument with a tungsten light source and a cadmium sulfide photodetector. This instrument peaks in spectral sensitivity at approximately 575 nm. Figure 10 shows the spectral characteristics of an instrument using the same light source and a silicon photodiode as the detector; its peak spectral sensitivity is approximately 875 nm. Because of this difference in spectral response, the instrument represented in Figure 9 is more sensitive to smaller particles than the instrument depicted in Figure 10. These diagrams also illustrate that maximum efficiency of the system is obtained when the source and detector are well-matched and their spectral curves have maximum overlap. Optical Geometry The third critical component affecting the characteristic response of a nephelometer is the optical geometry, which incorporates instrument design parameters such as the angle of scattered light detection. As explained in the section dealing with scatter theory, differences in the make-up of sample particles cause different angular scattering intensities. Almost all nephelometers used in water and wastewater analysis use a 90 detection angle. In addition to being less sensitive to variations in particle size, a 90 detection angle affords a simple optical system with very low stray light. The path length traversed by scattered light is a design parameter affecting both instrument sensitivity and linearity. Sensitivity increases as path length increases, but linearity is sacrificed at high particle concentrations due to multiple scattering and absorbance. Conversely, if the path length is decreased, the linearity range is increased but sensitivity is lost at low concentrations (this trade-off can be eliminated with an adjustable path length). The use of a short path length can also increase the impact of stray light. The EPA and ISO both require a path length of less than 10 cm total (measured from lamp filament to detector) in instrument design. The ratio turbidimeters manufactured by HACH use a combination of optical devices to achieve a higher degree of stability: a 90 detector, a combination of transmitted, forward-scatter, and back-scatter detectors, and black mirrors. More information on these instruments and their components is provided in the ratio section of this booklet (see page 16).
III. Practical Aspects of Turbidity Measurement Concepts explained in the previous section are basic to the fine accuracy achieved today when measuring turbidity under ideal conditions. In practical applications, however, significant problems can introduce interference and errors that reduce the accuracy of any instrument. To ensure the instrument is operating properly and providing the most accurate answers possible, it is important to verify its calibration.
Instrument Calibration and Verification The process of calibrating and verifying calibration of turbidimeters at ultra-low turbidity levels is very sensitive to both user technique and the surrounding environment. As measured turbidity levels drop below 1.0 NTU, the interferences caused by bubbles and particulate contamination, which can be slightly problematic at higher levels, can result in a false-positive reading and invalid verification results.
The correlation between turbidity and nephelometric light scatter is a well-defined linear relationship that covers the range of 0.012 to 40.0 NTU. This linearity includes the ultra-low measurement range between 0.012 and 1.00 NTU. Pure water has a turbidity of about 0.012 NTU, which makes measurement of theoretically lower turbidity levels impossible to achieve using aqueous solutions. This linear relationship allows for a single-point calibration to be effective over the entire range of 0.012 to 40.0 NTU. However, it is imperative that the standard be very accurate. To obtain the most accurate calibration for this linear range, most Hach turbidimeters use a 20.0 NTU formazin standard. This concentration is used because: 1. The standard is easy to prepare accurately from a concentrated stock formazin standard; 2. The standard remains stable long enough to maintain its accuracy for calibration; 3. The standard concentration is in the middle of the linear nephelometric range; and 4. Contamination and bubble errors have less effect on the calibration accuracy at 20 NTU than they would have on a lower calibration standard. Calibrating a turbidimeter using an ultra-low turbidity standard is not necessary, but confirming the accuracy and linearity of the instrument at ultra-low levels is important. The purpose of using ultra-low turbidity verification standards is to confirm the low-end performance of turbidimeters. StablCal Stabilized Formazin Turbidity Standards have been formulat ed at low turbidity values to provide a means of low-level calibration verification. These standards have been prepared and packaged under strictly controlled conditions in order to provide the highest accuracy possible. In addition, these standards are carefully packaged to minimize contamination from outside sources. Extraordinary measures are necessary to provide the most accurate means of verifying low-end calibration accuracy of turbidimeters. A single piece of dust or a single particle can cause a spike of more than 0.030 NTU. This can result in errors that exceed 10 percent. The necessary techniques that must be implemented for accurate low-level measurement are described in the next several sections. Stray Light Stray light is a significant source of error in low level turbidimetric measurements. Stray light reaches the detectors of an optical system, but does not come from the sample. An instrument responds to both light scattered from the sample and stray light sources within the instrument. Stray light has a number of sources: sample cells with scratched or imperfect surfaces, reflections within the sample cell compartment, reflections within the optical system, lamps that emit diverging light, and, to a small extent, electronics. In designing an instrument, lenses, apertures, black mirrors, and various light traps are used to help minimize stray light. However, there is a significant contributor to stray light that design cannot fully address: dust contamination within the sample cell compartment and optical compartments of the instrument. Over time, stray light in a turbidimeter will increase as the dust contamination increases and scatters light. In general, process turbidimeters will have lower stray light than laboratory turbidimeters if they are designed without a sample cell compartment. Unlike the case in spectrophotometry, stray light effects in turbidimetric measurement cannot be zeroed out. Some manufacturers attempt to do this with procedures where the user places a sample of turbidit y-free water in the sample cell compartment and then zeroes the turbidimeter by adjusting the output of the instrument. In doing this, several important aspects of turbidity measurement are overlooked. First, water will always have particles, even when filtered with the best filtration systems available. In addition, water molecules themselves scatter light. Molecular scattering and the presence of even ultra-small particles contribute to the turbidity of every aqueous sample. When a round 1-inch sample cell containing ultra-low turbidity water is measured, the lowest actual value is approximately 0.010 to 0.015 NTU, depending on the optical system used. The sample cell itself can also play a complicated role in stray light by contributing stray light through any scratches or imperfections that affect the incident beam. The sample cell can also help to focus the beam, which in turn may actually reduce stray light. Another important factor is the set of variables that are introduced when more than one sample cell is used. A second sample cell will contribute stray light effects that can (and probably do) differ significantly from the sample cell used to zero the instrument. All of these considerations are ignored when an instrument is zeroed. A substantial portion of the sample measurement being zeroed out will be falsely attributed to the turbidity of pure water, when in fact there are many factors involved. In this case, overcorrection will result and readings will be falsely low. A quantified value for stray light within a turbidimeter is difficult to determine. One method used to determine the stray light of an instrument is to prepare a formazin suspension of known low-turbidity concentration. This standard is then accurately spiked several times, with the value being measured between each spike. Through the method of standard additions, the theoretical value of the starting standard is calculated and evaluated against the measured value. Subtracting the measured value of the standard from the theoretical value results in a difference that is a close estimate of the stray light. This method of stray light determination is very difficult and requires meticulous cleanliness and very accurate measurement. However, it is an effective method of determining stray light. If low measurements are of
importance, stray light must be considered as part of the measurement. By using this method, the estimated instrument stray light may be factored out of the measurement. Table 1 gives the estimated stray light of Hach turbidimeters. There are several methods to reduce stray light. First is to use ultra-clean techniques in handling both sample cells and the instrument. The instrument should be kept in a clean, dust-free environment in order to reduce contamination. The instrument should be carefully cleaned at regular intervals. Sample cells should be scrupulously cleaned both inside and out. When not in use, sample cells should be capped to prevent dust contamination. In addition, silicone oil should be coated over the outside of the sample cell in order to fill in minor scratches which will also cause stray light.
Instrument
Range
Stray Light
2100A 0 to 10 NTU <0.04 NTU 2100 A 0 to 100, 0 to 1000 NTU <0.5 NTU SS6/SS6SE 0 to 10000 NTU <0.04 NTU* Ratio, Ratio XR 0 to 200, 0 to 2000 NTU <0.012 NTU 1720C 0 to 100 NTU <0.01 NTU* 1720D 0 to 100 NTU <0.008 NTU* 2100P 0 to 1000 NTU <0.02 NTU 2100N/AN 0 to 10000 NTU <0.01 NTU 2100 AN IS 0 to 10000 NTU <0.005 NTU 2100 N IS 0 to 10000 NTU/FNU <0.5 NTU Pocket Turbidimeter 0 to 400 NTU <0.1 NTU <0.1 NTU Table 1. Stray Light of Hach Turbidimeters. Over the years, Hach has continuously lowered the amount of stray light in its turbidimeters. *Values are not published directly. The SS6 specification is derived from its accuracy specification; the 1720C and 1720D are closely estimated using ultra-low standard spike recovery. Ultra-Low Measurements Ultra-low turbidity measurement is the primary interest in turbidity science. This generally applies to the measurement of clean aqueous samples that are less than 1 NTU in turbidity. In these samples, neither individual particles nor any haze will be visible to the naked eye. Examples include drinking water and ultra-pure water applications such as those in the semiconductor or power plant industries. In the measurement of ultra-low turbidity samples, there are two major sources of error: stray light (discussed above) and particle contamination of the sample. Particle contamination is a significant source of error. Several points address the minimization of this error source and are discussed below: 1. Sample cells and caps must be meticulously cleaned. The following procedure is recommended for cleaning sample cells. a) Wash the sample cells with soap and deionized water. b) Immediately follow by soaking the sample cells in a 1:1 Hydrochloric Acid solution for a minimum of one hour. Sample cells can be also be placed in a sonic bath to facilitate removal of particles from the glass surfaces. c) Immediately follow by rinsing the sample cells with ultra-filtered deionized water (reverse osmosis filtered or filtered through a 0.2 micron filter). Rinse a minimum of 15 times. d) Immediately after rinsing the sample cells, cap the cells to prevent contamination from the air, and to prevent the inner cell walls from drying out. A simple test can be performed to assess the cleanliness of sample cells. Fill the cleaned sample cell with ultrafiltered deionized water. Allow to stand undisturbed for several minutes. Polish the cell with silicone oil and measure the turbidity. Next, place the same cell in a sonic bath for 5 seconds. Repolish the cell and remeasure the turbidity. DO NOT invert cell during the test. If there is no change in turbidity, then the sample cells can be considered to be clean. If the turbidity increases, the cells are still dirty. The turbidity increase is due to the sonicating of particles from the inner walls of the sample cells, thus contaminating the sample. Another indication of dirty cells is noise in reading. Ultraclean cells filled with ultra-filtered water will display a very consistent, low turbidity level of less than 0.03 NTU. 2. Sample cells must be indexed. Once the sample cells have been cleaned, fill them with ultra-filtered, low turbidity water. Let samples stand to allow bubbles to rise. Next, polish the sample cells with silicone oil and measure the turbidity at several points of rotation on the sample cell. Find the orientation where the turbidity reading is the lowest and index this orientation. Use this orientation to perform all sample measurements.
3. Removal of bubbles. Micro-bubbles can be a source of positive interference in turbidity measurement. The best way to decrease this interference is to let the sample stand for several minutes to allow bubbles to vacate. If the sample needs to be mixed, gently and slowly invert it several times. This will mix the sample without introducing air bubbles that could show up in the measurement. The application of a vacuum to the sample is also effective. However, care must be taken not to contaminate the sample cell with the vacuum aspiration device. Sonic baths can also be used to eliminate bubbles, but sample cells must be demonstrated to be cleaned using a sonic bath before the bath is further used to remove bubbles. Also, the sonic bath can cause particles in the sample to fracture and change size, or to break away from the sample cell walls back into the sample, thus increasing sample turbidity. 4. Sample cells should be kept polished. Polishing the outside of sample cells with silicone oil helps prevent particles from attaching to the outer walls. The silicone oil will also aid in reducing stray light by filling in small imperfections that would otherwise scatter light. 5. If possible, use one sample cell. One sample cell that has been demonstrated to be clean and of high optical quality should be used to measure all samples. When inserted at the same index, the relative turbidity of samples can be accurately compared, eliminating any interference caused by the cell. If more than one cell is needed, they must be indexed. Use the best sample cell to calibrate the lowest point on the turbidimeter. Keep this cell to measure all low turbidity samples.
Instrument Accuracy in the Low Measurement Range It is very important to verify an instruments accuracy and response in the range where low level turbidity measurements are taking place. Traditionally accepted turbidity standards are difficult to prepare at these levels and are not stable for any length of time. Currently, there are two methods available for verifying low-level instrument accuracy. The easiest method involves the use of defined stabilized formazin verification standards. These standards are available in the range of 0.10 to 1.00 NTU and are prepared under stringent synthesis and packaging conditions to achieve the highest accuracy possible. Further, detailed instructions explain the exact use of these standards to achieve an accurate measurement of low-level instrument performance and measurement technique. A second method for assessing instrument performance at ultralow turbidity levels is to space a measured sample with a known volume of stable standard. To accurately perform this test, the following is needed: Ultra-low turbidity water, preferably reverse-osmosis filtered through a 0.2 micron (or smaller) membrane Ultra-cleaned glassware, including one sample cell of high optical quality A freshly prepared formazin turbidity standard, 20.0 NTU A TenSette Pipet or other accurate measuring auto-pipette. With these materials, the user can determine the instrument response to a turbidity spike. Below is an example of how to perform this test: 1. Pipette 25.0 mL of reverse-osmosis filtered water into a ultra-clean turbidimeter sample cell. The sample cell should be dry. Immediately cap this cell. 2. Polish the sample cell and carefully place the cell at index into the turbidimeter. 3. Wait for the reading to stabilize. Estndarlly a 1 to 5 minute wait is necessary to allow for any bubbles to evacuate the sample. 4. Record the stable turbidity reading. 5. Using the 0 to 1.0 mL TenSette Pipet and a clean pipet tip, spike 0.5 mL of the 20 NTU formazin standard. The formazin standard should be well mixed before use. The amount of turbidity added is 0.39 NTU. 6. Cap the sample cell, and slowly and carefully invert 10 times to mix. 7. Re-polish the sample cell. Place the sample cell at same index into the turbidimeter. 8. Again, wait for 1 to 5 minutes for the reading to stabilize. 9. Record the stable displayed reading. The difference between the value recorded in step 9 and the value of reverse osmosis water before spiking in step 4 is due to the instrument response to the spike of the 20 NTU formazin added to the sample. Theoretically, this response in turbidity is (in this example) 0.39 NTU. The difference between the instrument response and theoretical values can be estimated as the turbidimeters error (in NTU) in reading at this level. Stray light from both the instr ument and the sample cell are a large portion of this error. This error value can then be subtracted from the low turbidity measurements. This procedure works very well as long as (1) the glassware used is meticulously cleaned; (2) the spiked
sample is read immediately after preparation (within 30 minutes); (3) the spike is made accurately; (4) only one sample cell that is indexed the same each time is used; (5) the instrument optics are clean and the instrument is located in a clean environment; and (6) the same sample cell used in this test is used to measure samples. Characteristics of Ultrapure Water When water has reached an ultra-clean state, it has several characteristics that can be recognized in performing a turbidity measurement. In order to accurately assess the quality of samples at these levels, all of the discussed techniques must be applied to the preparation and measurement of these samples. The characteristics of ultrapure samples are listed below: 1. The turbidity reading is typically between 0.010 and 0.030 NTU when measured on a properly calibrated laboratory turbidimeter with low stray light. 2. The turbidity reading will be stable (the displayed reading will not vary) out to 0.001 NTU. If the reading fluctuates more than 0.003 NTU, the source is either due to particles or to bubbles moving through the light beam. If the fluctuation in reading is due to bubbles, the bubbles will leave the sample over time and the readings will eventually become stable. 3. The turbidity reading will be unchanged even when the sample undergoes a temperature change. 4. The sample may be colored, but will be highly transparent. No particles will be visible to the naked eye. Due to their high purity, ultra-clean samples are highly aggressive. Over time such samples can dissolve glass from a sample cell back into a sample to the point where the turbidity will increase. However, this takes time to occur, generally longer than 24 hours. Thus, fresh samples should always be used when making a turbidity measurement. Ultra-High Turbidity Measurement Ultra-high turbidity measurements are generally turbidity measurements where nephelometric light scatter can no longer be used to assess particle concentration in samples. In a sample with a measurement path length of 1-inch, nephelometric light-scatter signals begin to decrease at turbidities exceeding 2000 NTU. At this point, an increase in turbidity will result in a decrease in nephelometric signal. However, other measurements can be used to determine the turbidity of such samples. Three of these are transmitted, forward scatter, and back-scatter methods. Transmitted and forward-scatter signals are inversely proportional to increased turbidity and give good response to 4000 NTU. Above 4000 NTU (when using the standard 1-inch path), transmitted and forward-scatter signals are so low that instrument noise becomes a major interfering factor. On the other hand, back-scatter signals will increase proportionally with increases in turbidity. Back-scatter measurements have been determined to be highly effective at determining turbidity specifically in the range of 1000 to 10000 NTU (and higher). Below 1000 NTU, back-scatter signal levels are very low, and instrument noise begins to interfere with the measurements. With a combination of detectors, turbidity can now be measured from ultra-low to very high levels. See Section IV for how these detectors work together. The use of ultra-high turbidity measurement has many applications. It is used in the monitoring of fat content in milk, paint resin constituents such as titanium dioxide, liquor solutions in pulp and paper processing mills, and ore slurries in milling operations. When making ultra-high turbidity measurements, sample cell quality has a large effect on measurement accuracy. Sample cells are not perfectly round, nor is the cell wall of a consistent thickness. These two factors have a dramatic effect on the back-scatter measurement in particular. To minimize the effects of sample cell aberrations, an ultra-high turbidity sample should be read at several points of rotation on a single sample cell. Suggested rotation points are at 0, 90, 180, and 270 degrees from index. These four measurements must be made using the same sample preparation methodology. Measurements should be made during a timed interval after mixing in order to maximize reproducibility in measurement. All the measurements should be averaged and this value used as the turbidity of the sample. Ultra-high turbidity measurements are generally used as a mechanism for monitoring process control. The user must first determine the relationship of turbidity to varying conditions in the process stream. In determining this relationship, dilutions of the sample are made and the turbidity of each dilution is measured. A plot of turbidity (y-axis) versus each corresponding dilution (x-axis) is then made. The slope of the best fit line will indicate the nature of this relationship. If the slope is very large (greater than 1), then the response is good and potential interference is minimal in the measurement. If the slope is small (less than 0.1), then interferences are present and are impacting the measurements. In this case, the sample may need to be diluted until the slope increases. Last, if the slope is near zero or is negative, then either the turbidity is still too high and/or the interferences are too large for the measurements to be accurately used. Again, the sample needs to be diluted. Color can be a major interference in ultra-high turbidity measurements. A possible solution to color interference is to dilute the sample significantly. An alternative to diluting the sample is to determine the wavelength(s) where the sample absorbs light and then perform a turbidity measurement at an alternate wavelength where sample absorbance is
minimized. The use of wavelengths in the range of 800 to 860 nm is effective, because most naturally occurring substances do not significantly absorb light in this range. The ability to make turbidity measurements at ultra-high levels allows simple and accurate physical assessment of a wide array of samples and processes. In general, each process will be unique, and an effort must be made to accurately characterize a sample and its respective processes when using turbidimetric monitoring techniques. Turbidity vs. Suspended Solids Traditional solids analyses, usually completed by gravimetric methods, are timeconsuming and techniquesensitive. Generally, it takes from two to four hours to complete such an analysis. Thus, if a problem is found, it is often too late to make an easy correction to the process. This leads to costly down time and repairs to fix the problem. However, the turbidity of these samples may be used as a surrogate to the lengthy gravimetric analysis. A correlation needs to be established between the turbidity and total suspended solids (TSS) of the sample. If such a correlation exists, then a turbidimeter can be used to monitor TSS changes in a sample, resulting in a prompt analysis. The response time to a change in the TSS of a process can be reduced from hours to seconds with the use of a turbidimeter. A procedure has been developed to determine the correlation between turbidity and TSS of a sample. In determining this correlation for a sample, several considerations must be made throughout the entire procedure. These criteria are listed below: The sample must not contain solids that are buoyant. The sample must be fluid to the extent that it will become homogeneous with mixing and it can be accurately diluted. The sample must contain solids that are representative of future samples to be tested. The sample constituents must be well known. The procedure for determining the correlation must be over in as short a time period as possible. The sample must be well mixed for every dilution or measurement that is taken. The preparation and measurement methodology of each dilution must be the same throughout the correlation and monitoring of the samples or process. The sample temperature must be the same as that in the process of interest. Further, the temperature of all the dilutions must also be the same when performing either turbidity measurements or in the filtration of these samples for gravimetric analysis.
The procedure has been broken down into four steps, which are summarized below: 1. Sample dilution. Several dilutions of the sample must be prepared to cover the possible range of TSS for the given sample. These dilutions are to be made with turbidity-free water. The sample must be well mixed when making dilutions. Non-aqueous solutions must use a colorless, particle-free solute that matches the chemical and physical characteristics of the sample. 2. Determining the Total Suspended Solids (TSS) of each sample dilution. The gravimetric determination of each of the dilutions of the sample must be determined. Care must be taken to use consistent methodology throughout the entire set of samples. 3. Measuring the turbidity of each dilution. All samples must have the turbidity determined. The same methodology of sample preparation and measurement must be consistent for all turbidity readings. For example: each sample is inverted the same number of times, the wait between mixing and recording readings is consistent throughout the procedures, etc. 4. The correlation between the turbidity measurements and the gravimetric measurements of the dilutions is determined. A graph should be prepared in which total suspended solids in mg/L are displayed on the x-axis and respective turbidity is displayed on the y-axis. A least squares relationship can then be determined. Least squares is a statistical method to verify the relationship and determine the actual turbidity of a sample to within a certain degree of accuracy. A correlation coefficient of 0.9 or greater indicates a workable relationship of turbidity to TSS. By graphically plotting this relationship, one can determine the sensitivity of the correlation in order to gain confidence in the correlation. The greater the slope of this correlation, the greater the sensitivity of turbidity to TSS and the better the correlation will work on the sample. A copy of this procedure, Method 8366, may be obtained from Hach Company. IV. Advanced Measurement Techniques: Ratio Instrument Design Introduction
This section is devoted to the design and performance of a relatively new family of Hach turbidimeters that are designed to meet EPA criteria the 2100N, 2100AN, 2100AN IS, 2100N IS, and the 2100P. All feature ratio methodology and are designed for water and industrial applications. Why is Ratio turbidimeter methodology important? Because of the influence of sample color, the application of strict nephelometric turbidity has been limited, particularly in industrial processes that involve beverages, food products, cell cultures, and dispersed oil in water. Conventional turbidimeters could not separate the effects of color from turbidity measurement. So, in response to the changing needs of the water industry and the demands of colored liquid applications, Hach developed a series of instruments that use ratio turbidimeter methodology. These instruments not only eliminate the influence of sample color, but feature significant improvements in performance, convenience, and reliability over their predecessors. Design Objectives Five objectives were adopted early in the development of a ratio turbidimeter in order to achieve the highest performance and satisfy the broadest range of applications. 1. The instrument would meet ether USEPA or ISO 7027 requirements for water testing. The first objective ensured that the turbidimeter would meet the needs of the municipal water industry. Although the instruments unique features would result in many new applications, water testing was expected to continue as the largest single application for nephelometry. This objective dictated that certain design parameters be followed: A tungsten lamp light source would be operated at a filament color temperature between 2200 and 3000 K for USEPA and be 860 nm with a bandwidth of 60 nm for ISO 7027. The light path length within the sample was not to exceed 10 cm. Scattered light was detected at 90 2.5. This would serve as the primary detector for the instrument. For USEPA compliance, the detector and filter system response would peak between 400 and 6 00 nm. 2. The instrument would be so stable over the long term that the use of standards would not be routinely required. The requirement for long-term stability resulted in greater convenience and accuracy. Early nephelometers had front panel standardization controls which had to be set with a standard at each use of the instrument. The ratio turbidimeters achieved such stability that a monthly or quarterly calibration was sufficient. Calibrations were algorithm based, and were easier to perform than previous calibrations. Fewer calibrations meant greater reliance could be placed on primary formazin standards, rather than using secondary standards for calibrations. 3. The instrument would be accurate to approximately plus or minus 0.01 NTU, with stray light less than or equal to 0.010 NTU. As turbidimeters began to be used with increasing frequency at the lowest end of their ranges, accuracy at very low turbidities became essential. The largest source of error at low turbidities was stray lightthat is, light that reaches the detector due to sources other than sample turbidity. Stray light introduced a positive error, which made the sample read more turbid than it actually was. If the stray light of an instrument could be measured, the electronics could be adjusted to compensate. But because experimental determination of stray light was difficult, the preferred solution was to design an optical system with negligible stray light (refer to Section III). This was the course taken in the design of the 2100N, 2100AN, 2100AN IS, 2100N IS, and 2100P turbidimeters. 4. The instrument would have a digital readout directly in NTU units. Advantages of digital displays for analytical instrumentation are ease of use, freedom from reading errors, increased resolution, and accuracy. Digital displays also give the user information on sample noise and on the quality of low turbidity readings. While analog instruments could be calibrated with nonlinear meter scales, the electronic signal supplied to the digital display would need to be linear if the instrument were to read directly in turbidity units. This requirement had significant impact on the design of the ratio turbidimeters. 5. The instrument would be capable of accurate turbidity measurements, even in highly colored samples. A number of turbidity problems with colored samples could not be handled by a conventional nephelometer. Color provided a negative interference, attenuating both incident and scattered light, and the turbidity read a lower than it should. The effect was so great for even moderately colored samples that conventional nephelometers could not be used in these applications. Development of the ratio turbidimeters high degree of color rejection opened up many new applications for nephelometry. Figure 11. Optical design of Hach ratio turbidimeters. Optical Design
The ratio turbidimeters optical configuration is the key to several performance characteristics. Among them are good stability, linearity, sensitivity, low stray light and color rejection. Figure 11 shows the optical design used in the 2100N, 2100AN 2100 AN IS, or 2100N IS Laboratory Turbidimeters (the 2100N does not have a backscatter detector). The 2100P has a 90 detector and a light detector. The 2100N IS has only a 90 detector. The 2100N and 2100AN Laboratory Turbidimeters operate on the principle that the amount of light scattered from a sample is proportional to the quantity of particulate material in that sample. Light from a tungsten halogen lamp, operating at a nominal color temperature of 2700 K, is collected by a set of three polycarbonate lenses. The polycarbonate is able to withstand the temperature extremes from the lamp. The lenses are designed to gather as much light as possible and image the filament of the lamp to the sample cell. A blue infrared (IR) filter in the optical path causes the detector response to peak at a wavelength between 400 and 600 nanometers, in compliance with EPA guidelines. For the 2100AN, an optional interference filter may be used in place of the IR filter so that turbidity measurements can be made with quasi monochromatic light. A series of baffles in the path between the lenses and the sample cell catch light scattered from the lens surface to help prevent any stray light from getting to the detectors. All but the final baffle closest to the sample cell are sized so that the caustic that surrounds the light from the lenses barely touches the baffle edges. Also, the final baffle is oversized so that any misalignment of the beam does not cause the edges to glow and increase the instruments stray light. Silicon photodiodes in the sample area detect changes in light scattered or transmitted by the sample. A large transmitted-light detector measures the light that passes through the sample. A neutral density filter attenuates the light incident on this detector and the combination is canted at 45 degrees to the incident light, so that reflections from the surface of the filter and detector do not enter the sample cell area. A forward-scatter detector measures the light scattered at 30 degrees from the transmitted direction. A detector at 90 degrees nominal to the forward direction measures light scattered from the sample estndarl to the incident beam. This detector is mounted out of the plane formed by the light beam and the other detectors. The angle and baffling for this outof-plane mounting blocks light scattered directly from the sides of the sample cell while collecting light scattered from the light beam. The signals from each of these detectors are then mathematically combined to calculate the turbidity of a sample. The 2100AN contains a fourth, back-scatter detector that measures the light scattered at 138 degrees nominal from the transmitted direction. This detector sees light scattered by very turbid samples when the other detectors no longer produce a linear signal. It also extends the measurement range of the turbidimeter up to 10,000 NTU. Figure 12 (next page) shows the relationship of light scatter to turbidity at the various detectors used in the Hach laboratory turbidimeters. Figure 12. The Relationship of Light Scatter to Turbidity Figure 13. Instrument response vs. particulate concentrations for different optical geometries.
Figure 14. Stray light sources in a turbidimeter. Lamps and detectors are often the largest source of noise and drift in conventional nephelometers and other optical instruments. Use of advanced detectors removes part of this problem and the use of a ratio system compensates for lamp effects. The turbidity value is derived by ratioing the nephelometric signal against a weighted sum of the transmitted and forward-scattered signals. (At low or moderate turbidity levels, the forward-scattered signal is negligible in comparison to the transmitted signal; the output is just the ratio of 90 scattered light to transmitted light.) This ratioing, which gives the instruments their name, is a key feature in the instruments excellent longterm stability. In addition to lamp fluctuations, the ratio principle compensates for haze and dust on optics as well as temperature coefficients of detectors and amplifiers. These detectors, operated in a ratio configuration, give the instruments a degree of stability which makes continual standardization unnecessary. A general characteristic of single-beam nephelometers is to become nonlinear and eventually go blind at high turbidity levels, because the increase in light attenuation eventually has a larger effect than the increase in scattering. This behavior is exemplified in Figure 13 by the curve labeled C. One might expect that a simple ratio of scattered to transmitted light would extend the range of linearity because the rays traverse at more or less equal distances through the sample and should be affected equally by the attenuation, as is the case for attenuation by color. However, at high turbidity levels, light reaching the detectors is likely to have been scattered more than once. This multiple scattering acts to reduce the distance traversed by the scattered rays, while it can only increase the distance traversed by transmitted rays. Figure 14 shows a short-cut path along Line 1 that can be taken by a twice-scattered ray. The result is that the transmitted light is more attenuated than the scattered light at high turbidities, causing the instrument response to become nonlinear in the manner of Curve A in Figure 13. 2100N, 2100AN and 2100AN IS turbidimeters use the forward-scatter detector to linearize instrument response at high turbidities. The signal from this detector is combined with the transmitted signal in the denominator of the ratio. At lower turbidities, forward scatter is insignificant compared to transmitted light, so that the forwardscatter detector has no effect. At higher turbidities, the increase in forward scatter just compensates for the attenuation of the transmitted beam, and the instrument response is changed from that of Curve A in Figure 13 to the ideal linear form shown as
Curve B. By proper choice of the forward-scatter angle and the magnitude of the correction, the instrument has been made linear over its full range, as required for digital readout directly in NTU. Low stray-light characteristics are important for accurate measurement of low turbidity samples. The stray light specification of the 2100N, 2100AN, 2100AN IS, 2100N IS and the 2100P turbidimeters (less than 0.01 NTU for the laboratory models and 0.02 NTU for the 2100P) is significantly better than the Hach 2100A Turbidimeter (less than 0.04 NTU). Low stray light is achieved by mounting the 90 detector above the horizontal plane with suitable baffles as shown in Figure 15. The figure shows a cross section through the center of the sample cell looking along the axis of the light beam. Notice that the detector still detects light scattered at 90 from the incident beam. Baffles are arranged so that the detector views the volume of sample traversed by the incident beam, but cannot see the back wall of the sample cell above the optical axis. The reason for this arrangement is shown in Figure 14. Stray light generally is caused by scatter and reflections from the walls of the sample cell. Neither reflections alone nor scattering at a single surface cause any appreciable stray light to reach the detector in Figure 14, but two possible mechanisms are shown. The first shows a scatter event at the beam entrance which deflects a ray along Line 1 toward the detector where it is scattered again upon exiting and reaches the detector. The second path along Line 2 begins with scatter at the beam entrance followed by a reflection from the rear cell wall. The second mechanism is by far the largest source of stray light with an in-plane detector, because reflections (4%) are so much more intense than the scattering (0.1%) at cell walls. The out-of-plane detector shown in Figure 15 does not see these reflections and stray light is largely eliminated. Figure 15. The Ratio Turbidimeters out-of-plane detector minimizes stray light. Electronic Design The instrument contains different reading algorithms: ratio turbidity and non-ratio turbidity. (The design algorithm is for the most current turbidimeters). Each is described in the following sections. Ratio Turbidity (Four Point Ratio Turbidity*). The four point ratio calibration algorithm is defined as : T = I90 / (d0It + d1Ifs +d2Ibs + d3I90) where: T = Turbidity in NTU Units (0-10,000) d0 , d1, d2, d3 = Calibration coefficients I90 = Ninety degree detector current It = Transmitted detector current Ifs = Forward scatter detector current Ibs = Back scatter detector current *U.S. Patent 5,506,679 Non-Ratio Turbidity: The non-ratio algorithm is defined as: T = a0I90 where: T = Turbidity in NTU Units (0 40) a0 = Calibration constant I90 = Ninety degree detector current Applications In addition to providing stability, the ratio configuration is the basis for the color rejection of the instrument. Because the transmitted light and the 90-scatter light traverse nearly equivalent paths through the sample, they are affected equally by color attenuation. Therefore, when the ratio is taken, effects of color are largely reduced. This advantage has opened up many new applications for turbidity measurement, particularly in the food and beverage industries where products often are colored and aesthetic appearance is important. Figure 16 compares the effect of sample color on a ratio turbidimeter to the same effect on a conventional instrument. In both cases, the instrument was calibrated using formazin suspensions in deionized water. Known amounts of formazin were added to beer (yellow), a rose wine (pink) and a burgundy wine (dark red). Ideally one would obtain the same results in the colored solutions as in water. The conventional instruments results are very low, as is to be expected in any single-detector nephelometer. The more strongly colored the solution, the more severe the error. At the 100 NTU level, the beer, rose and burgundy read 60, 8 and 4 NTU, respectively, on the conventional nephelometer. The ratio turbidimeter gives much more ideal resultsonly about 10% low on the average. Notice that color compensation is not quite exact even with the ratio turbidimeter. The residual difference is attributed mainly to differences in the spectral distribution of scattered and transmitted light.
Figure 16. A response comparison of conventional turbidimeter and Ratio Turbidimeter to formazin turbidity in wines and beer. Figure 17 shows the response of a ratio turbidimeter and a conventional turbidimeter to colloidal carbon in water, beer and burgundy. In this case, there is no ideal sensitivity because the turbidity-producing material is not formazin. Figure 17. Response comparison of conventional turbidimeter and Ratio Turbidimeter to colloidal carbon turbidity in water, wines and beer.
There are three major points of interest in these data. First, the ratio turbidimeter is much more sensitive than the conventional turbidimeter to carbon particles. Second, ratio turbidimeter results are nearly independent of color, while the conventional turbidimeter results vary greatly with sample color. Third, the ratio turbidimeter gives results which are linear with carbon concentration. The conventional instrument starts out with a linear response at low concentrations but flattens out and even declines at higher levels. Thus, Figures 16 and 17 illustrate vastly improved response characteristics when a ratio turbidimeter is compared against a conventional instrument to measure the turbidity of samples characterized by solutions and/or particles that absorb light.
Conclusion Performance goals established for a ratio turbidimeter design have been achieved. The optical design and ratio system of these turbidimeters have several advantages. 1. In conventional nephelometers, as with other optical instrumentation, lamps and detectors often are the largest source of noise and drift. Use of advanced silicon photodetectors eliminates detector problems. Use of a ratio system compensates for lamp effects such as aging, haze and dust build-up on the optics, and temperature coefficients of detectors and amplifiers. Because the instrument has long-term stability, standardization is not routinely required. 2. The baffle system of the 90 detector provides excellent stray light rejection. This affords greater accuracy in very low turbidity measurements. 3. The forward-scatter detector helps provide a linear response over a wide range without sacrificing sensitivity in lower ranges. The linear response allows the analyst to use a digital readout with the familiar advantages of ease of use, freedom from reading errors, increased resolution, and noise characterization of samples. 4. The ratio system also is the basis for the instruments color rejection capabilities. Because the transmitted light and the 90-scatter light traverse nearly equivalent paths through the sample, they are affected equally by the attenuation by color, either dissolved or particulate. When the ratio is taken, the effects of color are thus largely reduced. 5. The back-scatter detector shows a linear response to very high turbidities. This allows turbidity measurement in the 4000 to 10000 NTU range. Although the 2100N, 2100AN, 2100AN IS, 2100N IS and the 2100P turbidimeters were designed to meet water industry needs, their capabilities will generate many new industrial applications. Figures 18, 19 and 20 show the 2100AN, 2100N and the 2100P turbidimeters. Figure 18. 2100AN Laboratory Turbidimeter Figure 19. 2100N Laboratory Turbidimeter. Figure 20. 2100P Portable Turbidimeter.
Advanced Techniques, Continued: Filters In turbidity measurement, two distinct methodologies have been developed: Standard Methods 2130 and the European ISO 7027 method. Both of these methods were designed and optimized for water samples with low turbidity and minimal color interference. However, there is a huge array of samples where these two methods fail to measure the turbidity accurately with a high degree of sensitivity. These samples generally contain either a strongly colored matrix, colored particles, or both. In addition, the sample may fluoresce or have a specific size class of particles. These characteristics will result in major interference that will severely decrease the performance of these two methods. Examples of such samples include: liquid food products, contamination monitoring during the production of various fluids, resins, the effluent of various milling steps, the breakdown of oils, bacterial counts in agars, and in the manufacturing of pulp and paper. This is just a small list of the large array of possibilities. In the measurement of turbidity by the Standard Methods method 2130, the optical characteristics include a very broad spectrum from a tungsten light source. In the 2100AN turbidimeter, this light source can be filtered through the use of
various interference filters to produce a specific wavelength of light to be used to perform a turbidity measurement. Through the use of filters, color interference may be completely eliminated and the sensitivity of the instrument to turbidity can be optimized. When should an alternate filtered light source be considered? Samples that are so strongly colored that the measurement sensitivity of the instrument is severely depressed should be considered ideal candidates for a filtered light source. In addition, samples that fluoresce and cause false high readings should also be measured with an alternate filtered light source. Last, the measurement of colored samples with very small particles that may not be sensitive to either accepted method may be optimized with an alternate light source. In order to determine spectrally what the interfering color is and how it is affecting the instrument's measurement performance, a spectral scan of the sample is necessary. From this scan, one can determine the wavelengths of light that interfere and then select the appropriate wavelengths of light to optimize the turbidimetric measurement of the sample. If a sample contains very small particles, the shortest wavelength not interfered with by the color within the sample matrix should be selected. If small particles are not of concern, a longer wavelength may be selected. This choice is due to the low sensitivity of long wavelength light to typical sample colors. When selecting the appropriate filter, one must also be a ware of the spectral characteristics of the instruments light source and detection system. Generally, Hach turbidimeters with a tungsten filament light source have a spectrum that allows for the use of broad band-pass interference filters greater than 600-nm. If a filter is installed that is below 600 nm or has too narrow a bandpass, there will not be enough signal from the light source to allow for an accurate turbidity measurement. Thus, filters greater than 600 nm with a wide band-pass will help to maximize signal output to the detectors of these instruments.
Wavelength
Sample 1
Sample 2
Sample 3
455 nm 37.3 31.4 147 620 nm 0.76 1.13 1.6 860 nm 0.114 0.168 0.627 Table 2. Effect of different light source wavelengths on turbidity readings. 2100AN Turbidimeter. Calibration performed after installing each filter. An example of an alternate filter system used to optimize turbidity analysis is in the measurement of power transformer insulating oils. These oils are colored and also contain sub-micron sized particles. To maximize the instrument sensitivity to the turbidity of this sample, we needed to find the shortest possible wavelength that would not be influenced by the color of the sample. The filter chosen also had to pass enough energy through the system to allow the turbidimeter to function correctly. A spectral scan performed on the sample indicated there would be color interference at any wavelength below 580-nm. Thus, we selected a 620 nm filter with a bandpass of 40 nm. This maximized the instruments sensitivity to the turbidity caused by small particles in the sample and at the same time eliminated interference due to color. Further, the filters broad bandwidth allowed enough energy to pass through for instrument detectors to function properly. Table 2 shows the oil samples turbidity at selected wavelengths. When considering the use of an alternate wavelength for performing turbidity measurements, one must understand that these custom methods are sample, and process-specific. If a custom method is to be transferred to a similar sample process, work should be performed to ensure the method is optimized and functioning properly on the sample of interest.
V. Proper Measurement Techniques Proper measurement techniques are important in minimizing the effects of instrument variables as well as stray light and air bubbles. Regardless of the instrument used, the measurement will be more accurate, precise and repeatable if attention is centered on the following techniques. 1. Maintain sample cells in good condition. Cells must be meticulously clean and free from significant scratches. Cleaning is best completed by thorough washing with laboratory soap inside and out, followed by multiple rinses with distilled or deionized water, then capping sample cells to prevent contamination from dust particles in the air (refer to Ultra-Low Measurements section). Cells should be treated on the outside with a thin coating
of silicone oil to mask minor imperfections and scratches that may contribute to stray light. The silicone oil should be applied uniformly by wiping the cells with a soft, lint-free cloth. Excessive oil applications must be avoided. Sample cells should be handled only by the top to avoid deposition of dirt and fingerprints within the light path. 2. Match sample cells. Once the sample cells have been cleaned, fill them with ultra-low turbidity water. Let samples stand to allow bubbles to rise. Next, polish the sample cells with silicone oil and measure the turbidity at several points of rotation of the sample cell (do not invert between rotations). Find the orientation where the turbidity reading is the lowest and index this orientation. Then, whenever this sample cell is used, be sure it is inserted into the sample cell holder at this same index mark. If possible, use one cell that is consistently inserted at the same index. 3. Degas the sample. Air or other entrained gases should be removed prior to measurement. Degassing is recommended even if no bubbles are visible. Three methods are commonly used for degassing: addition of a surfactant, application of a partial vacuum, or use of an ultrasonic bath. Addition of a surfactant to the water samples lowers the surface tension of the water, thereby releasing entrained gases. A partial vacuum can be created by using a simple syringe or a vacuum pump. (Application of a vacuum pump is only recommended for ultra-low measurements.) Using an ultrasonic bath may be effective in severe conditions or in viscous samples, but is not recommended for ultralow measurements. Use of a vacuum pump or an ultrasonic bath should be approached cautiously. Under certain sample conditions, these techniques can actually increase the presence of gas bubbles, especially when the sample contains volatile components. Further, sonication can contaminate the sample or change the particulate size distribution of the sample. The easiest, most cost-effective alternative to a vacuum pump for water samples is a 50-cc plastic syringe fitted with a small rubber stopper. After the sample cell is filled with the appropriate volume of sample, the stopper is inserted into the top of the cell with the syringe plunger pushed in. As the plunger is withdrawn, pressure within the cell drops and gas bubbles escape. All parts of the syringe should be kept clean and care must be taken not to contaminate the sample. 4. Samples should be measured immediately to prevent temperature and settling from changing the samples turbidimetric characteristics. Dilutions should be avoided when possible because a dilution may change the characteristics of particles which may be suspended. Suspended particles causing turbidity in the original sample may dissolve when the sample is diluted. Thus, the measurement would not be representative of the original sample. Similarly, temperature changes may affect solubility of sample components. Samples should be measured at the same temperature as at collection. If dilutions of aqueous samples are necessary, they should be made with ultra-filtered, turbidity-free water. This is best prepared through use of a reverse osmosis with a filter of 0.2 microns or less. Variation Among Instruments Perhaps the most significant practical consideration in turbidimetric measurement is the difference in measured values among different instruments that have been calibrated with the sample standard material. As explained previously, differences in the spectral characteristics of the light source/detector combination are the most important reason for different instruments giving different values for the same sample. At low NTU measurements, stray light is also a large variable. Table 1, page 12, shows variations in stray light among different Hach instruments. The seriousness of this problem and the misunderstanding associated with it concerns both users and manufacturers of nephelometers and turbidimeters. The authors of Standard Methods (19th edition) have attempted to minimize variation by specifying critical components of an instrument for turbidimetric measurement: 1. Light source: Tungsten-filament lamp operated at a color temperature between 2,200 and 3,000 K. 2. Distance traversed by incident light and scattered light within the sample tube: not to exceed 10 centimeters. 3. Angle of light acceptance by detector: centered at 90 to the incident light path and not to exceed 30 from 90. The detector and filter systems, if used, shall have a spectral peak response between 400 and 600 nm. The tolerance established by these specifications still allows substantial variability among instruments. Successful correlation of measurements from different turbidity stations can be achieved by using the same instrument model at each station.
VI. Innovative Approaches To Process Turbidity Measurement A pioneer in turbidimetric measurement, Hach Company has developed portable, laboratory, and process instruments to minimize the practical problems discussed previously and make turbidimetric measurement as error-free and reliable as
possible. Laboratory instruments were discussed in detail in earlier sections. This section will focus on process instruments. Process Turbidimeters Process turbidimetry presents unique challenges. Operation must be continuous. Control signals must be immediately available to provide process feedback. The instrument itself must have a wide dynamic range and be as maintenancefree as possible. Hach engineers have addressed these design constraints in several ways. Our main concerns were to eliminate the use of a sample cell and to minimize or eliminate contact between the sample and the instrument optical components. Low-Range Design Figure 21 is a graphic representation of the Hach 1720D Turbidimeter, designed specifically for improved bubble rejection and highly accurate turbidity readings in the lower ranges. In the 1720D, bubbles are eliminated before entering the primary chamber of the body through a network of baffles that force the sample through chambers exposed to the atmosphere. The greater distance between the baffle network and the measuring chamber in the Model 1720D causes less likelihood of trapped bubbles rising into the measuring chamber and producing reading fluctuations. The 1720D Turbidimeter is also a smart sensor. It features a microprocessor and all supporting electronics and optical components housed in one sensor head. The instrument sends data to other network devices linked through a communications module known as the AquaTrend Interface Module via a digital fieldbus protocol called LonWorks. This communication link between the smart sensors and the AquaTrend Interface enables customers to add or remove devices (instruments) and create a network topology specific to their application needs. The AquaTrend interface can monitor and control up to eight turbidity sensors at one time. This networked system approach provides the capability to install multiple AquaTrend Interface Modules for remote monitoring from different locations. Customers can place the 1720D sensor up to 400 meters (300 feet) away from the AquaTrend Interface. The display functions of the 1720D Turbidimeter are controlled through a separate, menu-based graphical user interface incorporated into the AquaTrend module. Users can display data from and communicate with up to eight turbidimeters. User-friendly menu screens prompt the user for calibration, alarm and recorded set-up, network configuration, security functions, display set-up, and diagnostic options. The AquaTrend modules user-friendly menus minimize the button-pushing and entry of alphanumeric codes that users experienced with older model turbidimeters. The module is housed in a NEMA 4X/IP66 (indoor) enclosure and features a keypad that is easily accessible. Figure 21. Hach 1720D Process Turbidimeter design. The 1720D has a 30 percent performance improvement in response when compared to similar instruments. At a flow rate of 500 mL/min, the 1720Ds average response time is 3.5 minutes. This faster response time is a result of lower sample volume (approximately 0.9L). The 1720Ds advanced keyhole design reduces stray light, providing more accurate (2% from 0 40 NTU and 5% from 40 100 NTU) readings. Combined with the design of the new bubble trap, the instrument significantly reduces entrained air in the sample, resulting in fewer turbidity reading fluctuations. Wide-Range Design Figure 22 represents another approach to process turbidimetry. The Surface Scatter Method of measurement used in Hach Surface Scatter 6 and Surface Scatter 6/SE (Severe Environment) turbidimeters is designed for wide-range measurement. This patented design completely eliminates contact between the sample and the instruments optical components. The light source and detector are mounted above the turbidimeter body, isolating optical components from the sample to provide virtually maintenance-free operation. Sample is brought into the center of the body, rising to the top and overflowing a weir into a drain. Flow rate is controlled to allow the overflow to form an optically flat surface. The light beam is focused on the sample surface at an acute angle. Light striking particles within the illuminated area is scattered, refracted or reflected as shown. Light not scattered is either refracted down the body of the instrument and absorbed, or is reflected off the sample surface and absorbed within the enclosure. Scattered light is detected by the photodetector and the signal from the detector is fed to the control unit. As turbidity increases, the amount of sample illuminated by the beam decreases. In effect, this adjusts the light path length to compensate for higher turbidity levels, allowing the instrument to achieve an extremely wide response range of nearly six decades, from 0.01 to 9999 NTU.
To complement the advantages of isolated optics in reducing maintenance requirements, large-diameter plumbing prevents clogging when monitoring high solids samples. The inclined turbidimeter body serves as a trap for settleable solids that could interfere with measurement and the drain at the bottom of the instrument allows periodic purging of accumulated solids. For very high solids, the bottom drain can be operated in the open position and flow increased to continuously purge solids from the instrument. Backwash Turbidimeter Excess backwashing per cycle can waste thousands of gallons of water. Designed specifically to monitor filter bed backwashing, the Backwash Turbidimeter (Figure 23) measures transmittance, and is capable of operating over a wide range of turbidity. The sensor is designed to be mounted directly in the wash water trough, providing rapid response to wash water clarity. Measurement is made by focusing the output of a light emitting diode (LED) through the sample as it flows through the center of the sensor assembly. Light transmitted through the sample is measured by a photodetector. Suspended solids will absorb and scatter some of the light, reducing transmittance. At the beginning of the cycle, light transmittance is standardized to read 100% on the clear, filtered water used to wash the filters. Light transmittance drops rapidly as solids trapped by the filter media are released into the wash water. As solids are washed away, wash water effluent clears and transmittance increases. By referencing clear wash water and sensing when filter cleaning is effectively complete, the backwash cycle can be kept to the shortest practical duration, achieving maximum filter washing efficiency