Nothing Special   »   [go: up one dir, main page]

Ir al contenido

Octonión

De Wikipedia, la enciclopedia libre
Octonión

Los octoniones son la extensión no asociativa de los cuaterniones. Fueron descubiertos por John T. Graves en 1843, e independientemente por Arthur Cayley, quien publicó el hallazgo por primera vez en 1845. Son llamados, a veces números de Cayley.

Los octoniones forman un álgebra 8-dimensional sobre los números reales y pueden ser comprendidos como un octeto ordenado de números reales. Cada octonión forma una combinación lineal de la base: 1, e1, e2, e3, e4, e5, e6, e7. La forma de multiplicar octoniones está dada en la tabla siguiente:

· 1 e1 e2 e3 e4 e5 e6 e7
1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 -1 e4 e7 -e2 e6 -e5 -e3
e2 e2 -e4 -1 e5 e1 -e3 e7 -e6
e3 e3 -e7 -e5 -1 e6 e2 -e4 e1
e4 e4 e2 -e1 -e6 -1 e7 e3 -e5
e5 e5 -e6 e3 -e2 -e7 -1 e1 e4
e6 e6 e5 -e7 e4 -e3 -e1 -1 e2
e7 e7 e3 e6 -e1 e5 -e4 -e2 -1

Este producto no es conmutativo ni asociativo. A causa de esta no asociatividad, los octoniones, a diferencia de los cuaterniones, no admiten una representación matricial.

Véase también

[editar]

Referencias

[editar]