Nothing Special   »   [go: up one dir, main page]

What a lovely hat

Is it made out of tin foil?




Dates are inconsistent

Dates are inconsistent

4 results sorted by ID

2024/1202 (PDF) Last updated: 2024-10-14
Prover - Toward More Efficient Formal Verification of Masking in Probing Model
Feng Zhou, Hua Chen, Limin Fan
Implementation

In recent years, formal verification has emerged as a crucial method for assessing security against Side-Channel attacks of masked implementations, owing to its remarkable versatility and high degree of automation. However, formal verification still faces technical bottlenecks in balancing accuracy and efficiency, thereby limiting its scalability. Former tools like maskVerif and CocoAlma are very efficient but they face accuracy issues when verifying schemes that utilize properties of...

2024/833 (PDF) Last updated: 2024-05-28
INDIANA - Verifying (Random) Probing Security through Indistinguishability Analysis
Christof Beierle, Jakob Feldtkeller, Anna Guinet, Tim Güneysu, Gregor Leander, Jan Richter-Brockmann, Pascal Sasdrich
Implementation

Despite masking being a prevalent protection against passive side-channel attacks, implementing it securely in hardware remains a manual, challenging, and error-prone process. This paper introduces INDIANA, a comprehensive security verification tool for hardware masking. It provides a hardware verification framework, enabling a complete analysis of simulation-based security in the glitch-extended probing model, with cycle-accurate estimations for leakage probabilities in the random...

2021/1671 (PDF) Last updated: 2021-12-21
IronMask: Versatile Verification of Masking Security
Sonia Belaïd, Darius Mercadier, Matthieu Rivain, Abdul Rahman Taleb

This paper introduces IronMask, a new versatile verification tool for masking security. IronMask is the first to offer the verification of standard simulation-based security notions in the probing model as well as recent composition and expandability notions in the random probing model. It supports any masking gadgets with linear randomness (e.g. addition, copy and refresh gadgets) as well as quadratic gadgets (e.g. multiplication gadgets) that might include non-linear randomness (e.g. by...

2018/562 (PDF) Last updated: 2019-07-08
maskVerif: automated analysis of software and hardware higher-order masked implementations
Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin Grégoire, François-Xavier Standaert
Implementation

Power and electromagnetic based side-channel attacks are serious threats against the security of cryptographic embedded devices. In order to mitigate these attacks, implementations use countermeasures, among which masking is currently the most investigated and deployed choice. Unfortunately, commonly studied forms of masking rely on underlying assumptions that are difficult to satisfy in practice. This is due to physical defaults, such as glitches or transitions, which can recombine the...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.