Magnetization reversal mechanisms and depth-dependent magnetic profile have been investigated in Co/Pd thin films magnetron-sputtered under continuously varying pressure with opposite deposition orders. For samples grown under increasing pressure, magnetization reversal is dominated by domain nucleation, propagation, and annihilation; an anisotropy gradient is effectively established, along with a pronounced depth-dependent magnetization profile. However, in films grown under decreasing pressure, disorders propagate vertically from the bottom high-pressure region into the top low-pressure region, impeding domain wall motion and forcing magnetization reversal via rotation; depth-dependent magnetization varies in an inverted order, but the spread is much suppressed. © 2014 AIP Publishing LLC.