Camera traps are a key tool in ecological studies, and are increasingly being used to understand entire communities. However, robust inferences continue to be hampered by low detection of rare and elusive species. Attractants can be used to increase detection rates, but may also alter behaviour, and little research has evaluated short-term, localized response to the presence of attractants. We conducted three camera trap surveys in Kibale National Park, Uganda, using food baits and scent lures ("attractants") at each camera station to entice small carnivores to pass in front of camera stations. To examine the interrelationship between scavenging and response to attractants, we also placed camera traps at five food refuse pits. We modelled the effect of attractant and duration of trap placement on the detection probability of small carnivores and selected African golden cat Caracal aurata prey items. We examine transient site response of each species, by comparing our observed likelihood of detection in each 24 h period from 1-7 d following refreshing of attractants to randomly generated capture histories. African civet Civettictis civetta, rusty-spotted genet Genetta maculata, African palm civet Nandinia binotata, and marsh mongoose Atilax paludinosus detection probabilities were highest and Weyns's red duiker Cephalophus wenysi detection probability was lowest immediately after attractants were placed. Within 24 h after attractant was placed, rusty-spotted genet and African palm civet were more likely to be detected and African golden cat, red duiker, and blue duiker Philantomba monticola were less likely to be detected. Our results suggest that attractants can increase detection of small-bodied species and include some arboreal species in terrestrial camera trap sampling. However, attractants may also alter short-term visitation rates of some species, with potentially cascading effects on others. Community level and intraguild interaction studies should control for the potentially confounding effects of attractants on spatial activity patterns.