- Ziparo, F;
- Popesso, P;
- Finoguenov, A;
- Biviano, A;
- Wuyts, S;
- Wilman, D;
- Salvato, M;
- Tanaka, M;
- Nandra, K;
- Lutz, D;
- Elbaz, D;
- Dickinson, M;
- Altieri, B;
- Aussel, H;
- Berta, S;
- Cimatti, A;
- Fadda, D;
- Genzel, R;
- Le Floc'h, E;
- Magnelli, B;
- Nordon, R;
- Poglitsch, A;
- Pozzi, F;
- Portal, M Sanchez;
- Tacconi, L;
- Bauer, FE;
- Brandt, WN;
- Cappelluti, N;
- Cooper, MC;
- Mulchaey, JS
We investigate the evolution of the star formation rate (SFR)-density relation in the Extended Chandra Deep Field South and the Great Observatories Origin Deep Survey fields up to z ~ 1.6. In addition to the 'traditional method', in which the environment is defined according to a statistical measurement of the local galaxy density, we use a 'dynamical' approach, where galaxies are classified according to three different environment regimes: group, 'filamentlike' and field. Both methods show no evidence of an SFR-density reversal. Moreover, group galaxies show a mean SFR lower than other environments up to z ~ 1, while at earlier epochs group and field galaxies exhibit consistent levels of star formation (SF) activity. We find that processes related to a massive dark matter halo must be dominant in the suppression of the SF below z ~ 1, with respect to purely density-related processes. We confirm this finding by studying the distribution of galaxies in different environments with respect to the so-called main sequence (MS) of star-forming galaxies. Galaxies in both group and 'filament-like' environments preferentially lie below the MS up to z ~ 1, with group galaxies exhibiting lower levels of star-forming activity at a given mass. At z > 1, the star-forming galaxies in groups reside on the MS. Groups exhibit the highest fraction of quiescent galaxies up to z ~ 1, after which group, 'filament-like' and field environments have a similar mix of galaxy types. We conclude that groups are the most efficient locus for SF quenching. Thus, a fundamental difference exists between bound and unbound objects, or between dark matter haloes of different masses. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.