Alternative infinite product
edit
Alternatively, let
q
=
e
π
i
τ
{\displaystyle q=e^{\pi i\tau }}
be the nome ,
f
(
q
)
=
q
−
1
24
∏
n
>
0
(
1
+
q
2
n
−
1
)
=
η
2
(
τ
)
η
(
τ
2
)
η
(
2
τ
)
,
f
1
(
q
)
=
q
−
1
24
∏
n
>
0
(
1
−
q
2
n
−
1
)
=
η
(
τ
2
)
η
(
τ
)
,
f
2
(
q
)
=
2
q
1
12
∏
n
>
0
(
1
+
q
2
n
)
=
2
η
(
2
τ
)
η
(
τ
)
.
{\displaystyle {\begin{aligned}{\mathfrak {f}}(q)&=q^{-{\frac {1}{24}}}\prod _{n>0}(1+q^{2n-1})={\frac {\eta ^{2}(\tau )}{\eta {\big (}{\tfrac {\tau }{2}}{\big )}\eta (2\tau )}},\\{\mathfrak {f}}_{1}(q)&=q^{-{\frac {1}{24}}}\prod _{n>0}(1-q^{2n-1})={\frac {\eta {\big (}{\tfrac {\tau }{2}}{\big )}}{\eta (\tau )}},\\{\mathfrak {f}}_{2}(q)&={\sqrt {2}}\,q^{\frac {1}{12}}\prod _{n>0}(1+q^{2n})={\frac {{\sqrt {2}}\,\eta (2\tau )}{\eta (\tau )}}.\end{aligned}}}
The form of the infinite product has slightly changed. But since the eta quotients remain the same, then
f
i
(
τ
)
=
f
i
(
q
)
{\displaystyle {\mathfrak {f}}_{i}(\tau )={\mathfrak {f}}_{i}(q)}
as long as the second uses the nome
q
=
e
π
i
τ
{\displaystyle q=e^{\pi i\tau }}
. The utility of the second form is to show connections and consistent notation with the Ramanujan G- and g-functions and the Jacobi theta functions , both of which conventionally uses the nome.
Relation to the Ramanujan G and g functions
edit
Still employing the nome
q
=
e
π
i
τ
{\displaystyle q=e^{\pi i\tau }}
, define the Ramanujan G- and g-functions as
2
1
/
4
G
n
=
q
−
1
24
∏
n
>
0
(
1
+
q
2
n
−
1
)
=
η
2
(
τ
)
η
(
τ
2
)
η
(
2
τ
)
,
2
1
/
4
g
n
=
q
−
1
24
∏
n
>
0
(
1
−
q
2
n
−
1
)
=
η
(
τ
2
)
η
(
τ
)
.
{\displaystyle {\begin{aligned}2^{1/4}G_{n}&=q^{-{\frac {1}{24}}}\prod _{n>0}(1+q^{2n-1})={\frac {\eta ^{2}(\tau )}{\eta {\big (}{\tfrac {\tau }{2}}{\big )}\eta (2\tau )}},\\2^{1/4}g_{n}&=q^{-{\frac {1}{24}}}\prod _{n>0}(1-q^{2n-1})={\frac {\eta {\big (}{\tfrac {\tau }{2}}{\big )}}{\eta (\tau )}}.\end{aligned}}}
The eta quotients make their connection to the first two Weber functions immediately apparent. In the nome, assume
τ
=
−
n
.
{\displaystyle \tau ={\sqrt {-n}}.}
Then,
2
1
/
4
G
n
=
f
(
q
)
=
f
(
τ
)
,
2
1
/
4
g
n
=
f
1
(
q
)
=
f
1
(
τ
)
.
{\displaystyle {\begin{aligned}2^{1/4}G_{n}&={\mathfrak {f}}(q)={\mathfrak {f}}(\tau ),\\2^{1/4}g_{n}&={\mathfrak {f}}_{1}(q)={\mathfrak {f}}_{1}(\tau ).\end{aligned}}}
Ramanujan found many relations between
G
n
{\displaystyle G_{n}}
and
g
n
{\displaystyle g_{n}}
which implies similar relations between
f
(
q
)
{\displaystyle {\mathfrak {f}}(q)}
and
f
1
(
q
)
{\displaystyle {\mathfrak {f}}_{1}(q)}
. For example, his identity,
(
G
n
8
−
g
n
8
)
(
G
n
g
n
)
8
=
1
4
,
{\displaystyle (G_{n}^{8}-g_{n}^{8})(G_{n}\,g_{n})^{8}={\tfrac {1}{4}},}
leads to
[
f
8
(
q
)
−
f
1
8
(
q
)
]
[
f
(
q
)
f
1
(
q
)
]
8
=
[
2
]
8
.
{\displaystyle {\big [}{\mathfrak {f}}^{8}(q)-{\mathfrak {f}}_{1}^{8}(q){\big ]}{\big [}{\mathfrak {f}}(q)\,{\mathfrak {f}}_{1}(q){\big ]}^{8}={\big [}{\sqrt {2}}{\big ]}^{8}.}
For many values of n , Ramanujan also tabulated
G
n
{\displaystyle G_{n}}
for odd n , and
g
n
{\displaystyle g_{n}}
for even n . This automatically gives many explicit evaluations of
f
(
q
)
{\displaystyle {\mathfrak {f}}(q)}
and
f
1
(
q
)
{\displaystyle {\mathfrak {f}}_{1}(q)}
. For example, using
τ
=
−
5
,
−
13
,
−
37
{\displaystyle \tau ={\sqrt {-5}},\,{\sqrt {-13}},\,{\sqrt {-37}}}
, which are some of the square-free discriminants with class number 2,
G
5
=
(
1
+
5
2
)
1
/
4
,
G
13
=
(
3
+
13
2
)
1
/
4
,
G
37
=
(
6
+
37
)
1
/
4
,
{\displaystyle {\begin{aligned}G_{5}&=\left({\frac {1+{\sqrt {5}}}{2}}\right)^{1/4},\\G_{13}&=\left({\frac {3+{\sqrt {13}}}{2}}\right)^{1/4},\\G_{37}&=\left(6+{\sqrt {37}}\right)^{1/4},\end{aligned}}}
and one can easily get
f
(
τ
)
=
2
1
/
4
G
n
{\displaystyle {\mathfrak {f}}(\tau )=2^{1/4}G_{n}}
from these, as well as the more complicated examples found in Ramanujan's Notebooks.
Relation to Jacobi theta functions
edit
The argument of the classical Jacobi theta functions is traditionally the nome
q
=
e
π
i
τ
,
{\displaystyle q=e^{\pi i\tau },}
ϑ
10
(
0
;
τ
)
=
θ
2
(
q
)
=
∑
n
=
−
∞
∞
q
(
n
+
1
/
2
)
2
=
2
η
2
(
2
τ
)
η
(
τ
)
,
ϑ
00
(
0
;
τ
)
=
θ
3
(
q
)
=
∑
n
=
−
∞
∞
q
n
2
=
η
5
(
τ
)
η
2
(
τ
2
)
η
2
(
2
τ
)
=
η
2
(
τ
+
1
2
)
η
(
τ
+
1
)
,
ϑ
01
(
0
;
τ
)
=
θ
4
(
q
)
=
∑
n
=
−
∞
∞
(
−
1
)
n
q
n
2
=
η
2
(
τ
2
)
η
(
τ
)
.
{\displaystyle {\begin{aligned}\vartheta _{10}(0;\tau )&=\theta _{2}(q)=\sum _{n=-\infty }^{\infty }q^{(n+1/2)^{2}}={\frac {2\eta ^{2}(2\tau )}{\eta (\tau )}},\\[2pt]\vartheta _{00}(0;\tau )&=\theta _{3}(q)=\sum _{n=-\infty }^{\infty }q^{n^{2}}\;=\;{\frac {\eta ^{5}(\tau )}{\eta ^{2}\left({\frac {\tau }{2}}\right)\eta ^{2}(2\tau )}}={\frac {\eta ^{2}\left({\frac {\tau +1}{2}}\right)}{\eta (\tau +1)}},\\[3pt]\vartheta _{01}(0;\tau )&=\theta _{4}(q)=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{n^{2}}={\frac {\eta ^{2}\left({\frac {\tau }{2}}\right)}{\eta (\tau )}}.\end{aligned}}}
Dividing them by
η
(
τ
)
{\displaystyle \eta (\tau )}
, and also noting that
η
(
τ
)
=
e
−
π
i
12
η
(
τ
+
1
)
{\displaystyle \eta (\tau )=e^{\frac {-\pi i}{\,12}}\eta (\tau +1)}
, then they are just squares of the Weber functions
f
i
(
q
)
{\displaystyle {\mathfrak {f}}_{i}(q)}
θ
2
(
q
)
η
(
τ
)
=
f
2
(
q
)
2
,
θ
4
(
q
)
η
(
τ
)
=
f
1
(
q
)
2
,
θ
3
(
q
)
η
(
τ
)
=
f
(
q
)
2
,
{\displaystyle {\begin{aligned}{\frac {\theta _{2}(q)}{\eta (\tau )}}&={\mathfrak {f}}_{2}(q)^{2},\\[4pt]{\frac {\theta _{4}(q)}{\eta (\tau )}}&={\mathfrak {f}}_{1}(q)^{2},\\[4pt]{\frac {\theta _{3}(q)}{\eta (\tau )}}&={\mathfrak {f}}(q)^{2},\end{aligned}}}
with even-subscript theta functions purposely listed first. Using the well-known Jacobi identity with even subscripts on the LHS,
θ
2
(
q
)
4
+
θ
4
(
q
)
4
=
θ
3
(
q
)
4
;
{\displaystyle \theta _{2}(q)^{4}+\theta _{4}(q)^{4}=\theta _{3}(q)^{4};}
therefore,
f
2
(
q
)
8
+
f
1
(
q
)
8
=
f
(
q
)
8
.
{\displaystyle {\mathfrak {f}}_{2}(q)^{8}+{\mathfrak {f}}_{1}(q)^{8}={\mathfrak {f}}(q)^{8}.}
Relation to j-function
edit
The three roots of the cubic equation
j
(
τ
)
=
(
x
−
16
)
3
x
{\displaystyle j(\tau )={\frac {(x-16)^{3}}{x}}}
where j (τ ) is the j-function are given by
x
i
=
f
(
τ
)
24
,
−
f
1
(
τ
)
24
,
−
f
2
(
τ
)
24
{\displaystyle x_{i}={\mathfrak {f}}(\tau )^{24},-{\mathfrak {f}}_{1}(\tau )^{24},-{\mathfrak {f}}_{2}(\tau )^{24}}
. Also, since,
j
(
τ
)
=
32
(
θ
2
(
q
)
8
+
θ
3
(
q
)
8
+
θ
4
(
q
)
8
)
3
(
θ
2
(
q
)
θ
3
(
q
)
θ
4
(
q
)
)
8
{\displaystyle j(\tau )=32{\frac {{\Big (}\theta _{2}(q)^{8}+\theta _{3}(q)^{8}+\theta _{4}(q)^{8}{\Big )}^{3}}{{\Big (}\theta _{2}(q)\,\theta _{3}(q)\,\theta _{4}(q){\Big )}^{8}}}}
and using the definitions of the Weber functions in terms of the Jacobi theta functions, plus the fact that
f
2
(
q
)
2
f
1
(
q
)
2
f
(
q
)
2
=
θ
2
(
q
)
η
(
τ
)
θ
4
(
q
)
η
(
τ
)
θ
3
(
q
)
η
(
τ
)
=
2
{\displaystyle {\mathfrak {f}}_{2}(q)^{2}\,{\mathfrak {f}}_{1}(q)^{2}\,{\mathfrak {f}}(q)^{2}={\frac {\theta _{2}(q)}{\eta (\tau )}}{\frac {\theta _{4}(q)}{\eta (\tau )}}{\frac {\theta _{3}(q)}{\eta (\tau )}}=2}
, then
j
(
τ
)
=
(
f
(
τ
)
16
+
f
1
(
τ
)
16
+
f
2
(
τ
)
16
2
)
3
=
(
f
(
q
)
16
+
f
1
(
q
)
16
+
f
2
(
q
)
16
2
)
3
{\displaystyle j(\tau )=\left({\frac {{\mathfrak {f}}(\tau )^{16}+{\mathfrak {f}}_{1}(\tau )^{16}+{\mathfrak {f}}_{2}(\tau )^{16}}{2}}\right)^{3}=\left({\frac {{\mathfrak {f}}(q)^{16}+{\mathfrak {f}}_{1}(q)^{16}+{\mathfrak {f}}_{2}(q)^{16}}{2}}\right)^{3}}
since
f
i
(
τ
)
=
f
i
(
q
)
{\displaystyle {\mathfrak {f}}_{i}(\tau )={\mathfrak {f}}_{i}(q)}
and have the same formulas in terms of the Dedekind eta function
η
(
τ
)
{\displaystyle \eta (\tau )}
.
Duke, William (2005), Continued Fractions and Modular Functions (PDF) , Bull. Amer. Math. Soc. 42
Weber, Heinrich Martin (1981) [1898], Lehrbuch der Algebra (in German), vol. 3 (3rd ed.), New York: AMS Chelsea Publishing, ISBN 978-0-8218-2971-4
Yui, Noriko; Zagier, Don (1997), "On the singular values of Weber modular functions", Mathematics of Computation , 66 (220): 1645–1662, doi :10.1090/S0025-5718-97-00854-5 , MR 1415803