In calculus , the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions.[ 1] [ 2] [ 3] Let
h
(
x
)
=
f
(
x
)
g
(
x
)
{\displaystyle h(x)={\frac {f(x)}{g(x)}}}
, where both f and g are differentiable and
g
(
x
)
≠
0.
{\displaystyle g(x)\neq 0.}
The quotient rule states that the derivative of h (x ) is
h
′
(
x
)
=
f
′
(
x
)
g
(
x
)
−
f
(
x
)
g
′
(
x
)
(
g
(
x
)
)
2
.
{\displaystyle h'(x)={\frac {f'(x)g(x)-f(x)g'(x)}{(g(x))^{2}}}.}
It is provable in many ways by using other derivative rules .
The reciprocal rule is a special case of the quotient rule in which the numerator
f
(
x
)
=
1
{\displaystyle f(x)=1}
. Applying the quotient rule gives
h
′
(
x
)
=
d
d
x
[
1
g
(
x
)
]
=
0
⋅
g
(
x
)
−
1
⋅
g
′
(
x
)
g
(
x
)
2
=
−
g
′
(
x
)
g
(
x
)
2
.
{\displaystyle h'(x)={\frac {d}{dx}}\left[{\frac {1}{g(x)}}\right]={\frac {0\cdot g(x)-1\cdot g'(x)}{g(x)^{2}}}={\frac {-g'(x)}{g(x)^{2}}}.}
Utilizing the chain rule yields the same result.
Proof from derivative definition and limit properties
edit
Let
h
(
x
)
=
f
(
x
)
g
(
x
)
.
{\displaystyle h(x)={\frac {f(x)}{g(x)}}.}
Applying the definition of the derivative and properties of limits gives the following proof, with the term
f
(
x
)
g
(
x
)
{\displaystyle f(x)g(x)}
added and subtracted to allow splitting and factoring in subsequent steps without affecting the value:
h
′
(
x
)
=
lim
k
→
0
h
(
x
+
k
)
−
h
(
x
)
k
=
lim
k
→
0
f
(
x
+
k
)
g
(
x
+
k
)
−
f
(
x
)
g
(
x
)
k
=
lim
k
→
0
f
(
x
+
k
)
g
(
x
)
−
f
(
x
)
g
(
x
+
k
)
k
⋅
g
(
x
)
g
(
x
+
k
)
=
lim
k
→
0
f
(
x
+
k
)
g
(
x
)
−
f
(
x
)
g
(
x
+
k
)
k
⋅
lim
k
→
0
1
g
(
x
)
g
(
x
+
k
)
=
lim
k
→
0
[
f
(
x
+
k
)
g
(
x
)
−
f
(
x
)
g
(
x
)
+
f
(
x
)
g
(
x
)
−
f
(
x
)
g
(
x
+
k
)
k
]
⋅
1
[
g
(
x
)
]
2
=
[
lim
k
→
0
f
(
x
+
k
)
g
(
x
)
−
f
(
x
)
g
(
x
)
k
−
lim
k
→
0
f
(
x
)
g
(
x
+
k
)
−
f
(
x
)
g
(
x
)
k
]
⋅
1
[
g
(
x
)
]
2
=
[
lim
k
→
0
f
(
x
+
k
)
−
f
(
x
)
k
⋅
g
(
x
)
−
f
(
x
)
⋅
lim
k
→
0
g
(
x
+
k
)
−
g
(
x
)
k
]
⋅
1
[
g
(
x
)
]
2
=
f
′
(
x
)
g
(
x
)
−
f
(
x
)
g
′
(
x
)
[
g
(
x
)
]
2
.
{\displaystyle {\begin{aligned}h'(x)&=\lim _{k\to 0}{\frac {h(x+k)-h(x)}{k}}\\&=\lim _{k\to 0}{\frac {{\frac {f(x+k)}{g(x+k)}}-{\frac {f(x)}{g(x)}}}{k}}\\&=\lim _{k\to 0}{\frac {f(x+k)g(x)-f(x)g(x+k)}{k\cdot g(x)g(x+k)}}\\&=\lim _{k\to 0}{\frac {f(x+k)g(x)-f(x)g(x+k)}{k}}\cdot \lim _{k\to 0}{\frac {1}{g(x)g(x+k)}}\\&=\lim _{k\to 0}\left[{\frac {f(x+k)g(x)-f(x)g(x)+f(x)g(x)-f(x)g(x+k)}{k}}\right]\cdot {\frac {1}{[g(x)]^{2}}}\\&=\left[\lim _{k\to 0}{\frac {f(x+k)g(x)-f(x)g(x)}{k}}-\lim _{k\to 0}{\frac {f(x)g(x+k)-f(x)g(x)}{k}}\right]\cdot {\frac {1}{[g(x)]^{2}}}\\&=\left[\lim _{k\to 0}{\frac {f(x+k)-f(x)}{k}}\cdot g(x)-f(x)\cdot \lim _{k\to 0}{\frac {g(x+k)-g(x)}{k}}\right]\cdot {\frac {1}{[g(x)]^{2}}}\\&={\frac {f'(x)g(x)-f(x)g'(x)}{[g(x)]^{2}}}.\end{aligned}}}
The limit evaluation
lim
k
→
0
1
g
(
x
+
k
)
g
(
x
)
=
1
[
g
(
x
)
]
2
{\displaystyle \lim _{k\to 0}{\frac {1}{g(x+k)g(x)}}={\frac {1}{[g(x)]^{2}}}}
is justified by the differentiability of
g
(
x
)
{\displaystyle g(x)}
, implying continuity, which can be expressed as
lim
k
→
0
g
(
x
+
k
)
=
g
(
x
)
{\displaystyle \lim _{k\to 0}g(x+k)=g(x)}
.
Proof using implicit differentiation
edit
Let
h
(
x
)
=
f
(
x
)
g
(
x
)
,
{\displaystyle h(x)={\frac {f(x)}{g(x)}},}
so that
f
(
x
)
=
g
(
x
)
h
(
x
)
.
{\displaystyle f(x)=g(x)h(x).}
The product rule then gives
f
′
(
x
)
=
g
′
(
x
)
h
(
x
)
+
g
(
x
)
h
′
(
x
)
.
{\displaystyle f'(x)=g'(x)h(x)+g(x)h'(x).}
Solving for
h
′
(
x
)
{\displaystyle h'(x)}
and substituting back for
h
(
x
)
{\displaystyle h(x)}
gives:
h
′
(
x
)
=
f
′
(
x
)
−
g
′
(
x
)
h
(
x
)
g
(
x
)
=
f
′
(
x
)
−
g
′
(
x
)
⋅
f
(
x
)
g
(
x
)
g
(
x
)
=
f
′
(
x
)
g
(
x
)
−
f
(
x
)
g
′
(
x
)
[
g
(
x
)
]
2
.
{\displaystyle {\begin{aligned}h'(x)&={\frac {f'(x)-g'(x)h(x)}{g(x)}}\\&={\frac {f'(x)-g'(x)\cdot {\frac {f(x)}{g(x)}}}{g(x)}}\\&={\frac {f'(x)g(x)-f(x)g'(x)}{[g(x)]^{2}}}.\end{aligned}}}
Proof using the reciprocal rule or chain rule
edit
Let
h
(
x
)
=
f
(
x
)
g
(
x
)
=
f
(
x
)
⋅
1
g
(
x
)
.
{\displaystyle h(x)={\frac {f(x)}{g(x)}}=f(x)\cdot {\frac {1}{g(x)}}.}
Then the product rule gives
h
′
(
x
)
=
f
′
(
x
)
⋅
1
g
(
x
)
+
f
(
x
)
⋅
d
d
x
[
1
g
(
x
)
]
.
{\displaystyle h'(x)=f'(x)\cdot {\frac {1}{g(x)}}+f(x)\cdot {\frac {d}{dx}}\left[{\frac {1}{g(x)}}\right].}
To evaluate the derivative in the second term, apply the reciprocal rule , or the power rule along with the chain rule :
d
d
x
[
1
g
(
x
)
]
=
−
1
g
(
x
)
2
⋅
g
′
(
x
)
=
−
g
′
(
x
)
g
(
x
)
2
.
{\displaystyle {\frac {d}{dx}}\left[{\frac {1}{g(x)}}\right]=-{\frac {1}{g(x)^{2}}}\cdot g'(x)={\frac {-g'(x)}{g(x)^{2}}}.}
Substituting the result into the expression gives
h
′
(
x
)
=
f
′
(
x
)
⋅
1
g
(
x
)
+
f
(
x
)
⋅
[
−
g
′
(
x
)
g
(
x
)
2
]
=
f
′
(
x
)
g
(
x
)
−
f
(
x
)
g
′
(
x
)
g
(
x
)
2
=
g
(
x
)
g
(
x
)
⋅
f
′
(
x
)
g
(
x
)
−
f
(
x
)
g
′
(
x
)
g
(
x
)
2
=
f
′
(
x
)
g
(
x
)
−
f
(
x
)
g
′
(
x
)
g
(
x
)
2
.
{\displaystyle {\begin{aligned}h'(x)&=f'(x)\cdot {\frac {1}{g(x)}}+f(x)\cdot \left[{\frac {-g'(x)}{g(x)^{2}}}\right]\\&={\frac {f'(x)}{g(x)}}-{\frac {f(x)g'(x)}{g(x)^{2}}}\\&={\frac {g(x)}{g(x)}}\cdot {\frac {f'(x)}{g(x)}}-{\frac {f(x)g'(x)}{g(x)^{2}}}\\&={\frac {f'(x)g(x)-f(x)g'(x)}{g(x)^{2}}}.\end{aligned}}}
Proof by logarithmic differentiation
edit
Let
h
(
x
)
=
f
(
x
)
g
(
x
)
.
{\displaystyle h(x)={\frac {f(x)}{g(x)}}.}
Taking the absolute value and natural logarithm of both sides of the equation gives
ln
|
h
(
x
)
|
=
ln
|
f
(
x
)
g
(
x
)
|
{\displaystyle \ln |h(x)|=\ln \left|{\frac {f(x)}{g(x)}}\right|}
Applying properties of the absolute value and logarithms,
ln
|
h
(
x
)
|
=
ln
|
f
(
x
)
|
−
ln
|
g
(
x
)
|
{\displaystyle \ln |h(x)|=\ln |f(x)|-\ln |g(x)|}
Taking the logarithmic derivative of both sides,
h
′
(
x
)
h
(
x
)
=
f
′
(
x
)
f
(
x
)
−
g
′
(
x
)
g
(
x
)
{\displaystyle {\frac {h'(x)}{h(x)}}={\frac {f'(x)}{f(x)}}-{\frac {g'(x)}{g(x)}}}
Solving for
h
′
(
x
)
{\displaystyle h'(x)}
and substituting back
f
(
x
)
g
(
x
)
{\displaystyle {\tfrac {f(x)}{g(x)}}}
for
h
(
x
)
{\displaystyle h(x)}
gives:
h
′
(
x
)
=
h
(
x
)
[
f
′
(
x
)
f
(
x
)
−
g
′
(
x
)
g
(
x
)
]
=
f
(
x
)
g
(
x
)
[
f
′
(
x
)
f
(
x
)
−
g
′
(
x
)
g
(
x
)
]
=
f
′
(
x
)
g
(
x
)
−
f
(
x
)
g
′
(
x
)
g
(
x
)
2
=
f
′
(
x
)
g
(
x
)
−
f
(
x
)
g
′
(
x
)
g
(
x
)
2
.
{\displaystyle {\begin{aligned}h'(x)&=h(x)\left[{\frac {f'(x)}{f(x)}}-{\frac {g'(x)}{g(x)}}\right]\\&={\frac {f(x)}{g(x)}}\left[{\frac {f'(x)}{f(x)}}-{\frac {g'(x)}{g(x)}}\right]\\&={\frac {f'(x)}{g(x)}}-{\frac {f(x)g'(x)}{g(x)^{2}}}\\&={\frac {f'(x)g(x)-f(x)g'(x)}{g(x)^{2}}}.\end{aligned}}}
Taking the absolute value of the functions is necessary for the logarithmic differentiation of functions that may have negative values, as logarithms are only real-valued for positive arguments. This works because
d
d
x
(
ln
|
u
|
)
=
u
′
u
{\displaystyle {\tfrac {d}{dx}}(\ln |u|)={\tfrac {u'}{u}}}
, which justifies taking the absolute value of the functions for logarithmic differentiation.
Higher order derivatives
edit