Nothing Special   »   [go: up one dir, main page]

Noncentral chi-squared distribution

In probability theory and statistics, the noncentral chi-squared distribution (or noncentral chi-square distribution, noncentral distribution) is a noncentral generalization of the chi-squared distribution. It often arises in the power analysis of statistical tests in which the null distribution is (perhaps asymptotically) a chi-squared distribution; important examples of such tests are the likelihood-ratio tests.[1]

Noncentral chi-squared
Probability density function
Cumulative distribution function
Parameters

degrees of freedom

non-centrality parameter
Support
PDF
CDF with Marcum Q-function
Mean
Variance
Skewness
Excess kurtosis
MGF
CF

Definitions

edit

Background

edit

Let   be k independent, normally distributed random variables with means   and unit variances. Then the random variable

 

is distributed according to the noncentral chi-squared distribution. It has two parameters:   which specifies the number of degrees of freedom (i.e. the number of  ), and   which is related to the mean of the random variables   by:

 

  is sometimes called the noncentrality parameter. Note that some references define   in other ways, such as half of the above sum, or its square root.

This distribution arises in multivariate statistics as a derivative of the multivariate normal distribution. While the central chi-squared distribution is the squared norm of a random vector with   distribution (i.e., the squared distance from the origin to a point taken at random from that distribution), the non-central   is the squared norm of a random vector with   distribution. Here   is a zero vector of length k,   and   is the identity matrix of size k.

Density

edit

The probability density function (pdf) is given by

 

where   is distributed as chi-squared with   degrees of freedom.

From this representation, the noncentral chi-squared distribution is seen to be a Poisson-weighted mixture of central chi-squared distributions. Suppose that a random variable J has a Poisson distribution with mean  , and the conditional distribution of Z given J = i is chi-squared with k + 2i degrees of freedom. Then the unconditional distribution of Z is non-central chi-squared with k degrees of freedom, and non-centrality parameter  .

Alternatively, the pdf can be written as

 

where   is a modified Bessel function of the first kind given by

 

Using the relation between Bessel functions and hypergeometric functions, the pdf can also be written as:[2]

 

The case k = 0 (zero degrees of freedom), in which case the distribution has a discrete component at zero, is discussed by Torgersen (1972) and further by Siegel (1979).[3][4]

Derivation of the pdf

edit

The derivation of the probability density function is most easily done by performing the following steps:

  1. Since   have unit variances, their joint distribution is spherically symmetric, up to a location shift.
  2. The spherical symmetry then implies that the distribution of   depends on the means only through the squared length,  . Without loss of generality, we can therefore take   and  .
  3. Now derive the density of   (i.e. the k = 1 case). Simple transformation of random variables shows that
 
where   is the standard normal density.
  1. Expand the cosh term in a Taylor series. This gives the Poisson-weighted mixture representation of the density, still for k = 1. The indices on the chi-squared random variables in the series above are 1 + 2i in this case.
  2. Finally, for the general case. We've assumed, without loss of generality, that   are standard normal, and so   has a central chi-squared distribution with (k − 1) degrees of freedom, independent of  . Using the poisson-weighted mixture representation for  , and the fact that the sum of chi-squared random variables is also a chi-square, completes the result. The indices in the series are (1 + 2i) + (k − 1) = k + 2i as required.

Properties

edit

Moment generating function

edit

The moment-generating function is given by

 

Moments

edit

The first few raw moments are:

 
 
 
 

The first few central moments are:

 
 
 

The nth cumulant is

 

Hence

 

Cumulative distribution function

edit

Again using the relation between the central and noncentral chi-squared distributions, the cumulative distribution function (cdf) can be written as

 

where   is the cumulative distribution function of the central chi-squared distribution with k degrees of freedom which is given by

 
and where   is the lower incomplete gamma function.

The Marcum Q-function   can also be used to represent the cdf.[5]

 

When the degrees of freedom k is positive odd integer, we have a closed form expression for the complementary cumulative distribution function given by[6]

 

where n is non-negative integer, Q is the Gaussian Q-function, and I is the modified Bessel function of first kind with half-integer order. The modified Bessel function of first kind with half-integer order in itself can be represented as a finite sum in terms of hyperbolic functions.

In particular, for k = 1, we have

 

Also, for k = 3, we have

 

Approximation (including for quantiles)

edit

Abdel-Aty derives (as "first approx.") a non-central Wilson–Hilferty transformation:[7]

  is approximately normally distributed,   i.e.,

 

which is quite accurate and well adapting to the noncentrality. Also,   becomes   for  , the (central) chi-squared case.

Sankaran discusses a number of closed form approximations for the cumulative distribution function.[8] In an earlier paper, he derived and states the following approximation:[9]

 

where

  denotes the cumulative distribution function of the standard normal distribution;
 
 
 

This and other approximations are discussed in a later text book.[10]

More recently, since the CDF of non-central chi-squared distribution with odd degree of freedom can be exactly computed, the CDF for even degree of freedom can be approximated by exploiting the monotonicity and log-concavity properties of Marcum-Q function as

 

Another approximation that also serves as an upper bound is given by

 

For a given probability, these formulas are easily inverted to provide the corresponding approximation for  , to compute approximate quantiles.

edit
  • If   is chi-square distributed   then   is also non-central chi-square distributed:  
  • A linear combination of independent noncentral chi-squared variables  , is generalized chi-square distributed.
  • If   and   and   is independent of   then a noncentral F-distributed variable is developed as  
  • If  , then  
  • If  , then   takes the Rice distribution with parameter  .
  • Normal approximation:[11] if  , then   in distribution as either   or  .
  • If  and  , where   are independent, then   where  .
  • In general, for a finite set of  , the sum of these non-central chi-square distributed random variables   has the distribution   where  . This can be seen using moment generating functions as follows:   by the independence of the   random variables. It remains to plug in the MGF for the non-central chi square distributions into the product and compute the new MGF – this is left as an exercise. Alternatively it can be seen via the interpretation in the background section above as sums of squares of independent normally distributed random variables with variances of 1 and the specified means.
  • The complex noncentral chi-squared distribution has applications in radio communication and radar systems.[citation needed] Let   be independent scalar complex random variables with noncentral circular symmetry, means of   and unit variances:  . Then the real random variable   is distributed according to the complex noncentral chi-squared distribution, which is effectively a scaled (by 1/2) non-central   with twice the degree of freedom and twice the noncentrality parameter:
 
where  

Transformations

edit

Sankaran (1963) discusses the transformations of the form  . He analyzes the expansions of the cumulants of   up to the term   and shows that the following choices of   produce reasonable results:

  •   makes the second cumulant of   approximately independent of  
  •   makes the third cumulant of   approximately independent of  
  •   makes the fourth cumulant of   approximately independent of  

Also, a simpler transformation   can be used as a variance stabilizing transformation that produces a random variable with mean   and variance  .

Usability of these transformations may be hampered by the need to take the square roots of negative numbers.

Various chi and chi-squared distributions
Name Statistic
chi-squared distribution  
noncentral chi-squared distribution  
chi distribution  
noncentral chi distribution  

Occurrence and applications

edit

Use in tolerance intervals

edit

Two-sided normal regression tolerance intervals can be obtained based on the noncentral chi-squared distribution.[12] This enables the calculation of a statistical interval within which, with some confidence level, a specified proportion of a sampled population falls.

Notes

edit
  1. ^ Patnaik, P. B. (1949). "The Non-Central χ2- and F-Distribution and their Applications". Biometrika. 36 (1/2): 202–232. doi:10.2307/2332542. ISSN 0006-3444.
  2. ^ Muirhead (2005) Theorem 1.3.4
  3. ^ Torgersen, E. N. (1972), "Supplementary notes on linear models", Preprint series: Statistical Memoirs, Dept. of Mathematics, University of Oslo, http://urn.nb.no/URN:NBN:no-58681
  4. ^ Siegel, A. F. (1979), "The noncentral chi-squared distribution with zero degrees of freedom and testing for uniformity", Biometrika, 66, 381–386
  5. ^ Nuttall, Albert H. (1975): Some Integrals Involving the QM Function, IEEE Transactions on Information Theory, 21(1), 95–96, ISSN 0018-9448
  6. ^ A. Annamalai, C. Tellambura and John Matyjas (2009). "A New Twist on the Generalized Marcum Q-Function QM(ab) with Fractional-Order M and its Applications". 2009 6th IEEE Consumer Communications and Networking Conference, 1–5, ISBN 978-1-4244-2308-8
  7. ^ Abdel-Aty, S. (1954). "Approximate Formulae for the Percentage Points and the Probability Integral of the Non-Central χ2 Distribution". Biometrika. 41: 538–540. JSTOR 2332731.
  8. ^ Sankaran, M. (1963). "Approximations to the non-central chi-squared distribution". Biometrika. 50 (1–2): 199–204. doi:10.1093/biomet/50.1-2.199.
  9. ^ Sankaran, M. (1959). "On the non-central chi-squared distribution". Biometrika. 46 (1–2): 235–237. doi:10.1093/biomet/46.1-2.235.
  10. ^ Johnson et al. (1995) Continuous Univariate Distributions Section 29.8
  11. ^ Muirhead (2005) pages 22–24 and problem 1.18.
  12. ^ Derek S. Young (August 2010). "tolerance: An R Package for Estimating Tolerance Intervals". Journal of Statistical Software. 36 (5): 1–39. ISSN 1548-7660. Retrieved 19 February 2013., p. 32

References

edit