Nothing Special   »   [go: up one dir, main page]

Jump to content

PALISADE (software)

From Wikipedia, the free encyclopedia
PALISADE
Developer(s)New Jersey Institute of Technology, Duality Technologies, Raytheon BBN Technologies, MIT, University of California, San Diego and other contributors[1]
Initial releaseJuly 15, 2017; 7 years ago (2017-07-15)
Stable release
1.11.7 / April 30, 2022; 2 years ago (2022-04-30)
Preview release
1.11.2 / May 26, 2021; 3 years ago (2021-05-26)
Repositorygitlab.com/palisade/palisade-release
Written inC++
PlatformMicrosoft Windows, MacOS, Linux
LicenseBSD 2-Clause
Websitepalisade-crypto.org

PALISADE is an open-source cross platform software library that provides implementations of lattice cryptography building blocks and homomorphic encryption schemes.[2]

History

[edit]

PALISADE adopted the open modular design principles of the predecessor SIPHER software library from the DARPA PROCEED program. SIPHER development began in 2010, with a focus on modular open design principles to support rapid application deployment over multiple FHE schemes and hardware accelerator back-ends, including on mobile, FPGA and CPU-based computing systems. PALISADE began building from earlier SIPHER designs in 2014, with an open-source release in 2017 and substantial improvements every subsequent 6 months.

PALISADE development was funded originally by the DARPA PROCEED and SafeWare programs, with subsequent improvements funded by additional DARPA programs, IARPA, the NSA, NIH, ONR, the United States Navy, the Sloan Foundation and commercial entities such as Duality Technologies. PALISADE has subsequently been used in commercial offerings, such as by Duality Technologies who raised funding in a Seed round[3] and a later Series A round[4] led by Intel Capital.

In 2022 OpenFHE was released as a fork that also implements CKKS bootstrapping.

Features

[edit]

PALISADE includes the following features:[5]

Availability

[edit]

There are several known git repositories/ports for PALISADE:

C++

[edit]

JavaScript / WebAssembly

[edit]

Python

[edit]

FreeBSD

[edit]

References

[edit]
  1. ^ "Community – PALISADE Homomorphic Encryption Software Library". Archived from the original on 2019-12-04. Retrieved 2019-12-11.
  2. ^ "PALISADE Homomorphic Encryption Software Library – An Open-Source Lattice Crypto Software Library". Archived from the original on 2019-11-16. Retrieved 2019-11-21.
  3. ^ "Walmart, Microsoft, AT&T-Backed Foundry Invests Millions in Encryption Pioneer". Fortune. Archived from the original on 2019-04-03. Retrieved 2019-11-21.
  4. ^ "Duality Technologies raises $16 million for privacy-preserving data science solutions". VentureBeat. 2019-10-30. Archived from the original on 2019-11-02. Retrieved 2019-11-21.
  5. ^ "PALISADE Lattice Cryptography Library Documentation". Retrieved 4 December 2019.
  6. ^ Fan, Junfeng; Vercauteren, Frederik (2012). "Somewhat Practical Fully Homomorphic Encryption". Cryptology ePrint Archive.
  7. ^ Z. Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP, In CRYPTO 2012 (Springer)
  8. ^ Bajard JC., Eynard J., Hasan M.A., Zucca V. A Full RNS Variant of FV Like Somewhat Homomorphic Encryption Schemes, In SAC 2016 (Springer)
  9. ^ Halevi S., Polyakov Y., Shoup V. An Improved RNS Variant of the BFV Homomorphic Encryption Scheme, In CT-RSA 2019 (Springer)
  10. ^ Kim, Andrey; Polyakov, Yuriy; Zucca, Vincent (2021). "Revisiting Homomorphic Encryption Schemes for Finite Fields". Cryptology ePrint Archive.
  11. ^ Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully Homomorphic Encryption without Bootstrapping, In ITCS 2012
  12. ^ Gentry, Craig; Halevi, Shai; Smart, Nigel (2012). "Homomorphic Evaluation of the AES Circuit.". Safavi-Naini R., Canetti R. (eds) Advances in Cryptology – CRYPTO 2012. CRYPTO 2012. Springer, Berlin, Heidelberg. pp. 850–867. doi:10.1007/978-3-642-32009-5_49.
  13. ^ Cheon, Jung Hee; Kim, Andrey; Kim, Miran; Song, Yongsoo (2017). "Homomorphic encryption for arithmetic of approximate numbers". Takagi T., Peyrin T. (eds) Advances in Cryptology – ASIACRYPT 2017. ASIACRYPT 2017. Springer, Cham. pp. 409–437. doi:10.1007/978-3-319-70694-8_15.
  14. ^ Cheon, Jung Hee; Han, Kyoohyung; Kim, Andrey; Kim, Miran; Song, Yongsoo (2018). "A Full RNS Variant of Approximate Homomorphic Encryption". Cid C., Jacobson Jr. M. (eds) Selected Areas in Cryptography – SAC 2018. SAC 2018. Springer, Cham. pp. 347–368. doi:10.1007/978-3-030-10970-7_16. PMC 8048025.
  15. ^ M. Blatt, A. Gusev, Y. Polyakov, K. Rohloff, and V. Vaikuntanathan. Optimized Homomorphic Encryption Solution for Secure Genome-Wide Association Studies, 2019
  16. ^ Han K. and Ki D.. Better Bootstrapping for Approximate Homomorphic Encryption, In CT-RSA 2020
  17. ^ Kim, Andrey; Papadimitriou, Antonis; Polyakov, Yuriy (2020). "Approximate Homomorphic Encryption with Reduced Approximation Error". Cryptology ePrint Archive.
  18. ^ Ducas, Leo; Micciancio, Daniele (2015). "FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second" (PDF). Oswald E., Fischlin M. (eds) Advances in Cryptology – EUROCRYPT 2015. EUROCRYPT 2015. Springer, Berlin, Heidelberg. pp. 617–640. doi:10.1007/978-3-662-46800-5_24.
  19. ^ a b D. Micciancio and Y. Polyakov. Bootstrapping in FHEW-like Cryptosystems, 2020
  20. ^ Ilaria Chillotti; Nicolas Gama; Mariya Georgieva; Malika Izabachene. "Faster Fully Homomorphic Encryption: Bootstrapping in less than 0.1 Seconds". Retrieved 31 December 2016.
  21. ^ Asharov, Gilad; Jain, Abhishek; López-Alt, Adriana; Tromer, Eran; Vaikuntanathan, Vinod; Wichs, Daniel (2012). "Multiparty Computation with Low Communication, Computation and Interaction via Threshold FHE". Advances in Cryptology – EUROCRYPT 2012. Lecture Notes in Computer Science. Vol. 7237. pp. 483–501. doi:10.1007/978-3-642-29011-4_29. ISBN 978-3-642-29010-7.
  22. ^ Yuriy Polyakov and Kurt Rohloff and Gyana Sahu and Vinod Vaikuntanthan (2017). "Fast Proxy Re-Encryption for Publish/Subscribe Systems". ACM Transactions on Privacy and Security.
  23. ^ a b Gentry C., Peikert C., Vaikuntanathan V. Trapdoors for Hard Lattices and New Cryptographic Constructions, In STOC 2008
  24. ^ Zhang, Jiang; Zhang, Zhenfeng; Ge, Aijun (2012). "Ciphertext policy attribute-based encryption from lattices". Proceedings of the 7th ACM Symposium on Information, Computer and Communications Security - ASIACCS '12. p. 16. doi:10.1145/2414456.2414464. ISBN 9781450316484. S2CID 15973033.