Nothing Special   »   [go: up one dir, main page]

Jump to content

Solar eclipse of January 14, 1964

From Wikipedia, the free encyclopedia
Solar eclipse of January 14, 1964
Map
Type of eclipse
NaturePartial
Gamma−1.2354
Magnitude0.5591
Maximum eclipse
Coordinates68°12′S 43°06′E / 68.2°S 43.1°E / -68.2; 43.1
Times (UTC)
Greatest eclipse20:30:08
References
Saros150 (14 of 71)
Catalog # (SE5000)9428

A partial solar eclipse occurred at the Moon's descending node of orbit on Tuesday, January 14, 1964,[1] with a magnitude of 0.5591. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. Partial solar eclipses occur in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

This was the first of four partial solar eclipses in 1964, with the others occurring on June 10, July 9, and December 4.

A partial eclipse was visible for parts of Antarctica and extreme southern South America.

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]

January 14, 1964 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1964 January 14 at 18:38:52.1 UTC
Equatorial Conjunction 1964 January 14 at 20:19:20.3 UTC
Greatest Eclipse 1964 January 14 at 20:30:08.2 UTC
Ecliptic Conjunction 1964 January 14 at 20:44:03.6 UTC
Last Penumbral External Contact 1964 January 14 at 22:21:24.3 UTC
January 14, 1964 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.55916
Eclipse Obscuration 0.44651
Gamma −1.23541
Sun Right Ascension 19h42m19.5s
Sun Declination -21°21'43.0"
Sun Semi-Diameter 16'15.6"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 19h42m41.8s
Moon Declination -22°29'45.9"
Moon Semi-Diameter 15'05.5"
Moon Equatorial Horizontal Parallax 0°55'23.3"
ΔT 35.1 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of December 1963–January 1964
December 30
Ascending node (full moon)
January 14
Descending node (new moon)
Total lunar eclipse
Lunar Saros 124
Partial solar eclipse
Solar Saros 150
[edit]

Eclipses in 1964

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 150

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 1961–1964

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipses on June 10, 1964 and December 4, 1964 occur in the next lunar year eclipse set.

Solar eclipse series sets from 1961 to 1964
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
120
February 15, 1961

Total
0.883 125 August 11, 1961

Annular
−0.8859
130 February 5, 1962

Total
0.2107 135 July 31, 1962

Annular
−0.113
140 January 25, 1963

Annular
−0.4898 145 July 20, 1963

Total
0.6571
150 January 14, 1964

Partial
−1.2354 155 July 9, 1964

Partial
1.3623

Saros 150

[edit]

This eclipse is a part of Saros series 150, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on August 24, 1729. It contains annular eclipses from April 22, 2126 through June 22, 2829. There are no hybrid or total eclipses in this set. The series ends at member 71 as a partial eclipse on September 29, 2991. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 45 at 9 minutes, 58 seconds on December 19, 2522. All eclipses in this series occur at the Moon’s descending node of orbit.[4]

Series members 5–27 occur between 1801 and 2200:
5 6 7

October 7, 1801

October 19, 1819

October 29, 1837
8 9 10

November 9, 1855

November 20, 1873

December 1, 1891
11 12 13

December 12, 1909

December 24, 1927

January 3, 1946
14 15 16

January 14, 1964

January 25, 1982

February 5, 2000
17 18 19

February 15, 2018

February 27, 2036

March 9, 2054
20 21 22

March 19, 2072

March 31, 2090

April 11, 2108
23 24 25

April 22, 2126

May 3, 2144

May 14, 2162
26 27

May 24, 2180

June 4, 2198

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 27, 1884 and August 20, 1971
March 27–29 January 14 November 1–2 August 20–21 June 8
108 110 112 114 116

March 27, 1884

August 20, 1895

June 8, 1899
118 120 122 124 126

March 29, 1903

January 14, 1907

November 2, 1910

August 21, 1914

June 8, 1918
128 130 132 134 136

March 28, 1922

January 14, 1926

November 1, 1929

August 21, 1933

June 8, 1937
138 140 142 144 146

March 27, 1941

January 14, 1945

November 1, 1948

August 20, 1952

June 8, 1956
148 150 152 154

March 27, 1960

January 14, 1964

November 2, 1967

August 20, 1971

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipse on November 4, 2116 (part of Saros 164) is also a part of this series but is not included in the table below.

Series members between 1801 and 2029

March 24, 1811
(Saros 136)

February 21, 1822
(Saros 137)

January 20, 1833
(Saros 138)

December 21, 1843
(Saros 139)

November 20, 1854
(Saros 140)

October 19, 1865
(Saros 141)

September 17, 1876
(Saros 142)

August 19, 1887
(Saros 143)

July 18, 1898
(Saros 144)

June 17, 1909
(Saros 145)

May 18, 1920
(Saros 146)

April 18, 1931
(Saros 147)

March 16, 1942
(Saros 148)

February 14, 1953
(Saros 149)

January 14, 1964
(Saros 150)

December 13, 1974
(Saros 151)

November 12, 1985
(Saros 152)

October 12, 1996
(Saros 153)

September 11, 2007
(Saros 154)

August 11, 2018
(Saros 155)

July 11, 2029
(Saros 156)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

April 24, 1819
(Saros 145)

April 3, 1848
(Saros 146)

March 15, 1877
(Saros 147)

February 23, 1906
(Saros 148)

February 3, 1935
(Saros 149)

January 14, 1964
(Saros 150)

December 24, 1992
(Saros 151)

December 4, 2021
(Saros 152)

November 14, 2050
(Saros 153)

October 24, 2079
(Saros 154)

October 5, 2108
(Saros 155)

September 15, 2137
(Saros 156)

August 25, 2166
(Saros 157)

August 5, 2195
(Saros 158)

References

[edit]
  1. ^ "January 14, 1964 Partial Solar Eclipse". timeanddate. Retrieved 7 August 2024.
  2. ^ "Partial Solar Eclipse of 1964 Jan 14". EclipseWise.com. Retrieved 7 August 2024.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 150". eclipse.gsfc.nasa.gov.
[edit]