Yield Estimation of Paddy Rice Based on Satellite Imagery: Comparison of Global and Local Regression Models
"> Figure 1
<p>Study area and rice field distribution maps.</p> "> Figure 2
<p>Schematic of ground survey data collection method commonly used in Taiwan.</p> "> Figure 3
<p>Ground survey data’s distribution maps for Erlin and Dapi.</p> "> Figure 4
<p>Flow chart of rice yield estimation. B—blue; R—red; G—green; NIR—near-infrared; GLCM—grey-level co-occurrence matrix.</p> "> Figure 5
<p>The first cultivation of Dapi in 2016 (<b>a</b>) and 2017 (<b>b</b>) with G, R, and NIR bands. The red areas on the images are all rice fields, but in 2016, they are a different color shade, which means that the transplanting time is not consistent, which influences the accuracy of the yield estimation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feature Selection
2.2. Study Area
2.3. Image and Yield Data Acquistion
2.4. Regression Models
2.5. Constructing the Yield Estimation Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). FAOSTAT Statistics Database; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Prasad, A.K.; Chai, L.; Singh, R.P.; Kafatos, M. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 26–33. [Google Scholar] [CrossRef]
- Chen, C.; Quilang, E.J.P.; Alosnos, E.D.; Finnigan, J. Rice area mapping, yield, and production forecast for the province of Nueva Ecija using RADARSAT imagery. Can. J. Remote Sens. 2011, 37, 1–16. [Google Scholar] [CrossRef]
- Prasad, A.; Singh, R.; Tare, V.; Kafatos, M. Use of vegetation index and meteorological parameters for the prediction of crop yield in India. Int. J. Remote Sens. 2007, 28, 5207–5235. [Google Scholar] [CrossRef]
- Sarma, A.; Kumar, T.L.; Koteswararao, K. Development of an agroclimatic model for the estimation of rice yield. J. Ind. Geophys. Union 2008, 12, 89–96. [Google Scholar]
- Savin, I.Y.; Isaev, V. Rice yield forecast based on satellite and meteorological data. Russ. Agric. Sci. 2010, 36, 424–427. [Google Scholar] [CrossRef]
- Teoh, C.; Nadzim, N.M.; Shahmihaizan, M.M.; Izani, I.M.K.; Faizal, K.; Shukry, H.M. Rice yield estimation using below cloud remote sensing images acquired by unmanned airborne vehicle system. Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 516–519. [Google Scholar] [CrossRef]
- Patel, N.; Ravi, N.; Navalgund, R.; Dash, R.; Das, K.; Patnaik, S. Estimation of rice yield using IRS-1A digital data in coastal tract of Orissa. Remote Sens. 1991, 12, 2259–2266. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.; Xu, X.; He, J.; Ge, X.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogram. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Swain, K.C.; Thomson, S.J.; Jayasuriya, H.P. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. Trans. ASABE 2010, 53, 21–27. [Google Scholar] [CrossRef]
- Mabalay, M.; Quilang, E.; Nelson, A.; Setiyono, T.; Maunahan, A.; Abonete, P.; Rola, A.; Raviz, J.; Skorzus, K.; Loro, J. Rice area mapping and yield estimation for crop insurance in Leyte Province [Philippines]. Philipp. J. Crop Sci. (Philippines) 2014, 39, 16. [Google Scholar]
- Noureldin, N.; Aboelghar, M.; Saudy, H.; Ali, A. Rice yield forecasting models using satellite imagery in Egypt. Egypt. J. Remote Sens. Space Sci. 2013, 16, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Wang, Q.; Zheng, T.; Li, X.; Shi, J.; Zhu, J. Estimation of rice yield based on integration remote sensing information and crop model. In Proceedings of the Remote Sensing and Modeling of Ecosystems for Sustainability IX, San Diego, CA, USA, 24 October 2012; p. 10. [Google Scholar]
- Son, N.; Chen, C.; Chen, C.; Minh, V.; Trung, N. A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation. Agric. For. Meteorol. 2014, 197, 52–64. [Google Scholar] [CrossRef]
- Campos-Taberner, M.; García-Haro, F.; Camps-Valls, G.; Grau-Muedra, G.; Nutini, F.; Busetto, L.; Katsantonis, D.; Stavrakoudis, D.; Minakou, C.; Gatti, L. Exploitation of SAR and optical Sentinel data to detect rice crop and estimate seasonal dynamics of leaf area index. Remote Sens. 2017, 9, 248. [Google Scholar] [CrossRef]
- Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H. Application of remote sensors in mapping rice area and forecasting its production: A review. Sensors 2015, 15, 769–791. [Google Scholar] [CrossRef] [PubMed]
- Lasko, K.; Vadrevu, K.P.; Tran, V.T.; Justice, C. Mapping Double and Single Crop Paddy Rice With Sentinel-1A at Varying Spatial Scales and Polarizations in Hanoi, Vietnam. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 498–512. [Google Scholar] [CrossRef] [PubMed]
- Mansaray, L.R.; Huang, W.; Zhang, D.; Huang, J.; Li, J. Mapping rice fields in urban Shanghai, Southeast China, using Sentinel-1A and Landsat 8 datasets. Remote Sens. 2017, 9, 257. [Google Scholar] [CrossRef]
- Lee, S.-K.; Yoon, S.; Won, J.-S. Vegetation Height Estimate in Rice Fields Using Single Polarization TanDEM-X Science Phase Data. Remote Sens. 2018, 10, 1702. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Su, S.; Wang, C. Retrieving canopy height and density of paddy rice from Radarsat-2 images with a canopy scattering model. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 170–180. [Google Scholar] [CrossRef]
- Shao, Y.; Fan, X.; Liu, H.; Xiao, J.; Ross, S.; Brisco, B.; Brown, R.; Staples, G. Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sens. Environ. 2001, 76, 310–325. [Google Scholar] [CrossRef]
- Maki, M.; Sekiguchi, K.; Homma, K.; Hirooka, Y.; Oki, K. Estimation of rice yield by SIMRIW-RS, a model that integrates remote sensing data into a crop growth model. J. Agric. Meteorol. 2017, 73, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Setiyono, T.; Holecz, F.; Khan, N.; Barbieri, M.; Quicho, E.; Collivignarelli, F.; Maunahan, A.; Gatti, L.; Romuga, G. Synthetic Aperture Radar (SAR)-based paddy rice monitoring system: Development and application in key rice producing areas in Tropical Asia. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 012015. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liao, Q.; Li, X.; Liao, S.; Chi, G.; Peng, S. Towards an operational system for regional-scale rice yield estimation using a time-series of Radarsat ScanSAR images. Int. J. Remote Sens. 2003, 24, 4207–4220. [Google Scholar] [CrossRef]
- Chen, C.; McNairn, H. A neural network integrated approach for rice crop monitoring. Int. J. Remote Sens. 2006, 27, 1367–1393. [Google Scholar] [CrossRef]
- Setiyono, T.D.; Quicho, E.D.; Gatti, L.; Campos-Taberner, M.; Busetto, L.; Collivignarelli, F.; García-Haro, F.J.; Boschetti, M.; Khan, N.I.; Holecz, F. Spatial rice yield estimation based on MODIS and Sentinel-1 SAR data and ORYZA crop growth model. Remote Sens. 2018, 10, 293. [Google Scholar] [CrossRef]
- Horie, T.; Nakagawa, H.; Centeno, H.; Kropff, M. The rice crop simulation model SIMRIW and its testing. Model. Impact Clim. Chang. Rice Prod. Asia 1995, 4, 51–66. [Google Scholar]
- Zhang, S.; Tao, F.; Shi, R. Modeling the rice phenology and production in China with SIMRIW: Sensitivity analysis and parameter estimation. Front. Earth Sci. 2014, 8, 505–511. [Google Scholar] [CrossRef]
- Homma, K.; Maki, M.; Hirooka, Y. Development of a rice simulation model for remote-sensing (SIMRIW-RS). J. Agric. Meteorol. 2017, 73, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Benkedjouh, T.; Medjaher, K.; Zerhouni, N.; Rechak, S. Health assessment and life prediction of cutting tools based on support vector regression. J. Intell. Manuf. 2015, 26, 213–223. [Google Scholar] [CrossRef]
- Hamdi, T.; Ali, J.B.; Di Costanzo, V.; Fnaiech, F.; Moreau, E.; Ginoux, J.-M. Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm. Biocybern. Biomed. Eng. 2018, 38, 362–372. [Google Scholar] [CrossRef]
- Zhang, F.; Deb, C.; Lee, S.E.; Yang, J.; Shah, K.W. Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique. Energy Build. 2016, 126, 94–103. [Google Scholar] [CrossRef]
- Chen, K.; Yu, J. Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach. Appl. Energy 2014, 113, 690–705. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Muljadi, E.; Zhang, J.J.; Gao, D.W. A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization. IEEE Trans. Smart Grid 2018, 9, 3341–3350. [Google Scholar] [CrossRef]
- Wu, C.-H.; Ho, J.-M.; Lee, D.-T. Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 2004, 5, 276–281. [Google Scholar] [CrossRef]
- Marković, N.; Milinković, S.; Tikhonov, K.S.; Schonfeld, P. Analyzing passenger train arrival delays with support vector regression. Transp. Res. Part C Emerg. Technol. 2015, 56, 251–262. [Google Scholar] [CrossRef]
- Chen, T.; Lu, S. Accurate and Efficient Traffic Sign Detection Using Discriminative AdaBoost and Support Vector Regression. IEEE Trans. Veh. Technol. 2016, 65, 4006–4015. [Google Scholar] [CrossRef]
- Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Bui, D.T.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar]
- Tien Bui, D.; Shahabi, H.; Shirzadi, A.; Chapi, K.; Alizadeh, M.; Chen, W.; Mohammadi, A.; Ahmad, B.; Panahi, M.; Hong, H. Landslide detection and susceptibility mapping by AIRSAR data using support vector machine and index of entropy models in Cameron Highlands, Malaysia. Remote Sens. 2018, 10, 1527. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Lischeid, G.; Dietrich, O. Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis. Int. J. Biometeorol. 2018, 62, 459–469. [Google Scholar] [CrossRef]
- Yuan, H.; Yang, G.; Li, C.; Wang, Y.; Liu, J.; Yu, H.; Feng, H.; Xu, B.; Zhao, X.; Yang, X. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models. Remote Sens. 2017, 9, 309. [Google Scholar] [CrossRef]
- Son, N.-T.; Chen, C.-F.; Chen, C.-R.; Minh, V.-Q. Assessment of Sentinel-1A data for rice crop classification using random forests and support vector machines. Geocarto Int. 2018, 33, 587–601. [Google Scholar] [CrossRef]
- Ndikumana, E.; Minh, D.H.T.; Thu, D.N.H.; Baghdadi, N.; Courault, D.; Hossard, L.; El Moussawi, I. Rice height and biomass estimations using multitemporal SAR Sentinel-1: Camargue case study. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XX, Berlin, Germany, 10 October 2018. [Google Scholar]
- Imran, M.; Stein, A.; Zurita-Milla, R. Using geographically weighted regression kriging for crop yield mapping in West Africa. Int. J. Geogr. Inf. Sci. 2015, 29, 234–257. [Google Scholar] [CrossRef]
- Haghighattalab, A.; Crain, J.; Mondal, S.; Rutkoski, J.; Singh, R.P.; Poland, J. Application of geographically weighted regression to improve grain yield prediction from unmanned aerial system imagery. Crop Sci. 2017, 57, 2478–2489. [Google Scholar] [CrossRef]
- Cai, R.; Yu, D.; Oppenheimer, M. Estimating the spatially varying responses of corn yields to weather variations using geographically weighted panel regression. J. Agric. Resour. Econ. 2014, 230–252. [Google Scholar]
- Kerry, R.; Goovaerts, P.; Giménez, D.; Oudemans, P. Investigating temporal and spatial patterns of cranberry yield in New Jersey fields. Precis. Agric. 2017, 18, 507–524. [Google Scholar] [CrossRef]
- Caetano, J.M.; Tessarolo, G.; de Oliveira, G.; e Souza, K.d.S.; Diniz-Filho, J.A.F.; Nabout, J.C. Geographical patterns in climate and agricultural technology drive soybean productivity in Brazil. PLoS ONE 2018, 13, e0191273. [Google Scholar] [CrossRef]
- Bitter, C.; Mulligan, G.F.; Dall’erba, S. Incorporating spatial variation in housing attribute prices: A comparison of geographically weighted regression and the spatial expansion method. J. Geogr. Syst. 2007, 9, 7–27. [Google Scholar] [CrossRef]
- Huang, Y.; Leung, Y. Analysing regional industrialisation in Jiangsu province using geographically weighted regression. J. Geogr. Syst. 2002, 4, 233–249. [Google Scholar] [CrossRef]
- Dziauddin, M.F.; Powe, N.; Alvanides, S. Estimating the effects of light rail transit (LRT) system on residential property values using geographically weighted regression (GWR). Appl. Spat. Anal. Policy 2015, 8, 1–25. [Google Scholar] [CrossRef]
- Murakami, T.; Nakajima, S.; Takahashi, T.; Nishihara, Y.; Imai, A.; Kikushima, R.; Sato, T. Spatially Varying Impacts of Farmers Markets on Agricultural Land Use. 2014. Available online: https:// https://ssrn.com/abstract=245071 (accessed on 31 October 2018).
- Kimsey Jr, M.J.; Moore, J.; McDaniel, P. A geographically weighted regression analysis of Douglas-fir site index in north central Idaho. For. Sci. 2008, 54, 356–366. [Google Scholar]
- Windle, M.J.; Rose, G.A.; Devillers, R.; Fortin, M.-J. Exploring spatial non-stationarity of fisheries survey data using geographically weighted regression (GWR): An example from the Northwest Atlantic. ICES J. Mar. Sci. 2009, 67, 145–154. [Google Scholar] [CrossRef]
- Osborne, P.E.; Foody, G.M.; Suárez-Seoane, S. Non-stationarity and local approaches to modelling the distributions of wildlife. Divers. Distrib. 2007, 13, 313–323. [Google Scholar] [CrossRef]
- Víquez-R, L.R.; Arias-Alzate, A.; Ceballos, G. Spatial patterns of species richness and functional diversity in Costa Rican terrestrial mammals: Implications for. Divers. Res. 2015, 22, 43–56. [Google Scholar]
- Propastin, P. Modifying geographically weighted regression for estimating aboveground biomass in tropical rainforests by multispectral remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 82–90. [Google Scholar] [CrossRef]
- Propastin, P.; Kappas, M.; Erasmi, S. Application of Geographically Weighted Regression to Investigate the Impact of Scale on Prediction Uncertainty by Modelling Relationship between Vegetation and Climate. IJSDIR 2008, 3, 73–94. [Google Scholar]
- Sadorus, L.L.; Mantua, N.J.; Essington, T.; Hickey, B.; Hare, S. Distribution patterns of Pacific halibut (Hippoglossus stenolepis) in relation to environmental variables along the continental shelf waters of the US West Coast and southern British Columbia. Fish. Oceanogr. 2014, 23, 225–241. [Google Scholar] [CrossRef]
- Acharya, B.K.; Cao, C.; Lakes, T.; Chen, W.; Naeem, S.; Pandit, S. Modeling the spatially varying risk factors of dengue fever in Jhapa district, Nepal, using the semi-parametric geographically weighted regression model. Int. J. Biometeorol. 2018, 62, 1973–1986. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Y.; Pontius, R.G.; Zhang, Z. Geographically weighted regression to measure spatial variations in correlations between water pollution versus land use in a coastal watershed. Ocean Coast. Manag. 2015, 103, 14–24. [Google Scholar] [CrossRef]
- Li, C.; Li, F.; Wu, Z.; Cheng, J. Exploring spatially varying and scale-dependent relationships between soil contamination and landscape patterns using geographically weighted regression. Appl. Geogr. 2017, 82, 101–114. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, C.; Wang, S.; Hu, J. Identifying the socioeconomic determinants of population exposure to particulate matter (PM 2.5) in China using geographically weighted regression modeling. Environ. Pollut. 2018, 241, 494–503. [Google Scholar] [CrossRef]
- Wan, S.; Chang, S.-H.; Peng, C.-T.; Chen, Y.-K. A novel study of artificial bee colony with clustering technique on paddy rice image classification. Arab. J. Geosci. 2017, 10, 215. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Jeong, S.; Ko, J.; Yeom, J.-M. Nationwide Projection of Rice Yield Using a Crop Model Integrated with Geostationary Satellite Imagery: A Case Study in South Korea. Remote Sens. 2018, 10, 1665. [Google Scholar] [CrossRef]
- Yang, J.; Du, L.; Gong, W.; Shi, S.; Sun, J.; Chen, B. Potential of vegetation indices combined with laser-induced fluorescence parameters for monitoring leaf nitrogen content in paddy rice. PLoS ONE 2018, 13, e0191068. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens. 2017, 9, 708. [Google Scholar] [CrossRef]
- Wiegand, C.; Shibayama, M.; Yamagata, Y.; Akiyama, T. Spectral observations for estimating the growth and yield of rice. Jpn. J. Crop Sci. 1989, 58, 673–683. [Google Scholar] [CrossRef]
- Panda, S.S.; Ames, D.P.; Panigrahi, S. Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote Sens. 2010, 2, 673–696. [Google Scholar] [CrossRef]
- Gilabert, M.A.; González-Piqueras, J.; Garcίa-Haro, F.J.; Meliá, J. A generalized soil-adjusted vegetation index. Remote Sens. Environ. 2002, 82, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Cutler, M.; Boyd, D.; Foody, G.; Vetrivel, A. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions. ISPRS J. Photogram. Remote Sens. 2012, 70, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Charoenjit, K.; Zuddas, P.; Allemand, P.; Pattanakiat, S.; Pachana, K. Estimation of biomass and carbon stock in Para rubber plantations using object-based classification from Thaichote satellite data in Eastern Thailand. J. Appl. Remote Sens. 2015, 9, 096072. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Cheng, T.; Zhou, M.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery. Precis. Agric. 2018. [Google Scholar] [CrossRef]
- Yamamoto, K.; Guo, W.; Yoshioka, Y.; Ninomiya, S. On plant detection of intact tomato fruits using image analysis and machine learning methods. Sensors 2014, 14, 12191–12206. [Google Scholar] [CrossRef] [PubMed]
- Central Weather Bureau Observation Data Inquire System. Available online: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp (accessed on 31 October 2018).
- Nuarsa, I.W.; Nishio, F.; Hongo, C. Rice yield estimation using Landsat ETM+ data and field observation. J. Agric. Sci. 2011, 4, 45. [Google Scholar] [CrossRef]
- Chang, Q.; Chen, Q.; Wang, X. Scaling Gaussian RBF kernel width to improve SVM classification. In Proceedings of the International Conference on Neural Networks and Brain, Beijing, China, 13–15 October 2005; pp. 19–22. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
Vegetation Indices | Variables | Formula | Reference |
---|---|---|---|
Cropping Management Factor Index | CMFI | [65] | |
Transformed Soil-Adjusted Vegetation Index | TSAVI | [66,67] | |
Optimized Soil-Adjusted Vegetation Index | OSAVI | Y = 0.16 | [66,68] |
Infrared Percentage Vegetation Index | IPVI | [12] | |
Ratio Vegetation Index | RVI | [9,12] | |
Modified Soil Adjust Vegetation Index | MSAVI | [69] | |
Greenness Index | GI | [70] | |
Perpendicular Vegetation Index | PVI | [71,72] | |
Soil Adjusted Vegetation Index | SAVI | L = 0.5 | [9,12,72] |
Normalized Difference Vegetation Index | NDVI | [9,12,68] | |
Generalized Soil-Adjusted Vegetation Index | GESAVI | [73] |
GLCM Indices | Variable | Formula | Description | Expected Sign | Reference |
---|---|---|---|---|---|
GLCM Mean | Mea | The local mean grey level value in a given area. This measure helps distinguish the spectral difference between higher and lower paddy rice yield. Rice fields with a higher yield absorb more blue and red light, and reflect more green and near infrared light. | B/G/R/NIR −/+/−/+ | [74,75,76] | |
GLCM Variance | Var | A measure of heterogeneity. The variance increases when the grey level values differ from their mean. Paddy rice with higher yields usually show denser canopy cover, less shadows, and less bare soil; and thus, its surface shows little variation and lower variance. | − | [74,75,76] | |
GLCM Contrast | Con | Measures the linear dependency of the grey levels of the neighboring pixels. High contrast represents heavy textures. Similar to the characteristics of the paddy rice with higher yields mentioned above, this usually shows lower contrast. | − | [74,75,76,77] | |
GLCM Dissimilarity | Dis | Defines the variation of grey level pairs in an image. It is the closest to Contrast with a difference in the weight. Contrast will always give slightly higher values than Dissimilarity. | − | [74,75,76] | |
GLCM Homogeneity | Hom | Measures the level of variation in a given area. A high homogeneity refers to the textures that contain ideal repetitive structures. Paddy rice with higher yields usually show a higher homogeneity. | + | [74,75,76] | |
GLCM Correlation | Cor | A measure of the grey level linear dependence between the pixels at the specified positions relative to each other. Paddy rice with a higher yield usually shows a higher correlation. | + | [74,75,76] | |
GLCM Entropy | Ent | Measures the level of chaos in a given area. A completely random distribution would have a very high entropy because it represents chaos. A solid tone image would have an entropy value of 0. Paddy rice with higher yields usually show lower entropy. | − | [74,75,76] | |
GLCM Angular second moment | Sec | Measures the textural uniformity that is pixel pair repetitions. High angular second moment values occur when the grey level distribution is constant or periodic. Paddy rice with higher yields usually show higher angular second moment values. | + | [74,75,76,77] |
Variable Combination | Selection Methods of Variables |
---|---|
Combination 1 | 47 variables |
Combination 2 | 47 variables + Pearson correlation + Regression calculation |
Combination 3 | 47 variables + Pearson correlation + Multiple Regression calculation |
Year | Date of SPOT 1 | Num. | Max. (t. ha−1) | Min. (t. ha−1) | Aver. (t. ha−1) | Std. (t. ha−1) | Proportion to All Rice Fields | Actual Total Yield (ton) | |
---|---|---|---|---|---|---|---|---|---|
Erlin | 2016 | 19/05/2016 | 40 | 8.473 | 6.462 | 7.500 | 0.583 | 0.514% | 21.882.4 |
2017 | 07/05/2017 | 63 | 10.205 | 6.347 | 7.858 | 0.709 | 0.655% | 24.661.3 | |
Dapi | 2016 | 28/03/2016 | 26 | 11.530 | 4.864 | 8.230 | 1.393 | 0.242% | 21.311.2 |
2017 | 07/05/2017 | 57 | 9.679 | 3.726 | 8.127 | 1.036 | 0.547% | 22.232.1 |
Year | Combination | Selected Variable | OLS | SVR | GWR |
---|---|---|---|---|---|
2016 | 1 | 47 | −6.50% | 5.42% | F 2 |
2 | B, G, R, NIR, GI, MSAVI, NDVI, RVI, SecR 1 | −2.59% | 6.31% | 7.46% | |
3 | B, MSAVI, RVI, SecR | −2.53% | 6.31% | −2.47% | |
2017 | 1 | 47 | 5.13% | 7.16% | F |
2 | G, NIR, GI, RVI, TSAVI, HomG, VarR, VarNIR | 6.96% | 6.84% | 6.91% | |
3 | G, NIR, GI, RVI, TSAVI, VarR | 6.87% | 6.64% | 6.80% |
Year | Combination | Selected Variable | OLS | SVR | GWR |
---|---|---|---|---|---|
2016 | 1 | 47 | −10.35% | 11.34% | F |
2 | B, G, R, NIR, GI, MSAVI, RVI, SAVI, VarNIR | 11.07% | 11.34% | 10.34% | |
3 | B, NIR, GI, SAVI, VarNIR | 10.91% | 13.22% | 10.32% | |
2017 | 1 | 47 | −3.64% | 2.78% | F |
2 | B, R, MSAVI, SAVI, CorNIR, DisNIR, EntNIR, HomNIR, MeaNIR | −1.47% | 3.20% | −1.81% | |
3 | B, GI, MSAVI, SAVI, EntNIR, MeaNIR | −1.79% | 2.75% | 0.06% |
Area | Combination | Selected Variable | OLS | SVR | GWR |
---|---|---|---|---|---|
Erlin | 1 | 47 | 6.36% | 9.39% | F |
2 | B, R, CMFI, GI, CorN, EntNIR, HomNIR, MeaNIR | 7.84% | 8.68% | 6.31% | |
3 | B, GI, HomNIR, MeaNIR | 7.71% | 10.69% | 3.89% | |
Dapi | 1 | 47 | −2.00% | −0.33% | F |
2 | B, R, CMFI, GI, CorN, EntNIR, HomNIR, MeaNIR | −1.11% | 1.16% | −0.81% | |
3 | B, GI, HomNIR, MeaNIR | −0.98% | 1.84% | −1.03% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiu, Y.-S.; Chuang, Y.-C. Yield Estimation of Paddy Rice Based on Satellite Imagery: Comparison of Global and Local Regression Models. Remote Sens. 2019, 11, 111. https://doi.org/10.3390/rs11020111
Shiu Y-S, Chuang Y-C. Yield Estimation of Paddy Rice Based on Satellite Imagery: Comparison of Global and Local Regression Models. Remote Sensing. 2019; 11(2):111. https://doi.org/10.3390/rs11020111
Chicago/Turabian StyleShiu, Yi-Shiang, and Yung-Chung Chuang. 2019. "Yield Estimation of Paddy Rice Based on Satellite Imagery: Comparison of Global and Local Regression Models" Remote Sensing 11, no. 2: 111. https://doi.org/10.3390/rs11020111
APA StyleShiu, Y. -S., & Chuang, Y. -C. (2019). Yield Estimation of Paddy Rice Based on Satellite Imagery: Comparison of Global and Local Regression Models. Remote Sensing, 11(2), 111. https://doi.org/10.3390/rs11020111