Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF): Case Study of Southern China
"> Figure 1
<p>This study’s region of interest (the main part of southern China), with MAX-DOAS measurement site indicated (blue triangle).</p> "> Figure 2
<p>OMI-NASA monthly average tropospheric NO<sub>2</sub> VCD in southern China: (<b>a</b>) January 2015; (<b>b</b>) April 2015; (<b>c</b>) July 2015; and (<b>d</b>) October 2015. The units of the figures are molecules/cm<sup>2</sup>, ranging 0–1.4 × 10<sup>16</sup> molecules/cm<sup>2</sup>. Here, we only consider pixels that have Cloud Fraction <math display="inline"><semantics> <mrow> <mo>≤</mo> <mo> </mo> </mrow> </semantics></math>0.2, tropospheric AMF > 10<sup>−6</sup> and satisfy Quality Flags constraints stated in <a href="#sec2dot2-remotesensing-10-01789" class="html-sec">Section 2.2</a>. Cities mentioned in <a href="#sec4dot1-remotesensing-10-01789" class="html-sec">Section 4.1</a> are labeled in the spatial plots.</p> "> Figure 3
<p>BEHR-HK v3.0C monthly average tropospheric NO<sub>2</sub> VCD in southern China. (<b>a</b>) January 2015; (<b>b</b>) April 2015; (<b>c</b>) July 2015; and (<b>d</b>) October 2015. The units of the figures are molecules/cm<sup>2</sup>, ranging 0–1.4 × 10<sup>16</sup> molecules/cm<sup>2</sup>. Here, we only consider pixels that have Cloud Fraction <math display="inline"><semantics> <mrow> <mo>≤</mo> <mo> </mo> </mrow> </semantics></math>0.2, tropospheric AMF > 10<sup>−6</sup> and satisfy Quality Flags constraints stated in <a href="#sec2dot2-remotesensing-10-01789" class="html-sec">Section 2.2</a>. Cities mentioned in <a href="#sec4dot1-remotesensing-10-01789" class="html-sec">Section 4.1</a> are labeled in the spatial plots.</p> "> Figure 4
<p>Monthly average tropospheric NO<sub>2</sub> VCD in southern China from WRF-CMAQ simulation (<b>a</b>) January 2015; (<b>b</b>) April 2015; (<b>c</b>) July 2015; and (<b>d</b>) October 2015. The units of the figures are molecules/cm<sup>2</sup>, ranging 0–1.4 × 10<sup>16</sup> molecules/cm<sup>2</sup>. Projection onto our redefined grid (<a href="#sec3dot3-remotesensing-10-01789" class="html-sec">Section 3.3</a>) was conducted during the plotting process.</p> "> Figure 5
<p>Percentage difference in tropospheric NO<sub>2</sub> VCD between BEHR-HK v3.0C and OMI-NASA retrieval. (<b>a</b>) January 2015; (<b>b</b>) April 2015; (<b>c</b>) July 2015; and (<b>d</b>) October 2015. The scale ranges from −60% to +60%. Here, we only consider pixels that have Cloud Fraction <math display="inline"><semantics> <mrow> <mo>≤</mo> <mo> </mo> </mrow> </semantics></math>0.2, tropospheric AMF > 10<sup>−6</sup> and satisfy Quality Flags constraints stated in <a href="#sec2dot2-remotesensing-10-01789" class="html-sec">Section 2.2</a>. Cities mentioned in <a href="#sec4dot2-remotesensing-10-01789" class="html-sec">Section 4.2</a> are labeled in the spatial plots.</p> "> Figure 6
<p>(<b>a</b>) Average tropospheric NO<sub>2</sub> VCD of southern China by BEHR-HK v3.0B retrieval for July 2015 (<span class="html-italic">before</span> filtering pixels); (<b>b</b>) average tropospheric NO<sub>2</sub> VCD of southern China by BEHR-HK v3.0B retrieval for July 2015 (<span class="html-italic">after</span> filtering pixels); and (<b>c</b>) average tropospheric NO<sub>2</sub> VCD of southern China by BEHR-HK v3.0C retrieval for July 2015 (without pixels being filtered). The units for all plots are in molecules/cm<sup>2</sup>.</p> "> Figure 7
<p>BEHR-HK v3.0C vs. BEHR-HK v3.0B. (<b>a</b>) January 2015; (<b>b</b>) April 2015; (<b>c</b>) July 2015 (based on filtered datasets in BEHR-HK v3.0B); and (<b>d</b>) October 2015. The blue lines represent the line <span class="html-italic">y</span> = <span class="html-italic">x</span>, while the data points represent the pixel value at each small grid based upon the two retrievals. Both <span class="html-italic">x</span> and <span class="html-italic">y</span> axes are tropospheric NO<sub>2</sub> VCD; units are molecules/cm<sup>2</sup>.</p> "> Figure 8
<p>Tropospheric NO<sub>2</sub> VCD in April 2015 obtained through MAX-DOAS measurements (Purple Triangles), and satellite retrieval: OMI-NASA (Red Squares), BEHR-HK v3.0C (Green Circles) for 12 dates for which all datasets have available information. The error bound indicates the uncertainty estimates of each measurement or retrieval result, based on description provided in <a href="#sec6dot1-remotesensing-10-01789" class="html-sec">Section 6.1</a>.</p> "> Figure 9
<p>Tropospheric NO<sub>2</sub> VCD in July 2015 obtained through MAX-DOAS measurements (Purple Triangles), and satellite retrieval: OMI-NASA (Red Squares), BEHR-HK v3.0C (Green Circles) for 18 dates for which all datasets have available information. The error bound indicates the uncertainty estimates of each measurement or retrieval result, based on description provided in <a href="#sec6dot1-remotesensing-10-01789" class="html-sec">Section 6.1</a>.</p> "> Figure 10
<p>(<b>a</b>) OMI-NASA tropospheric NO<sub>2</sub> VCD vs. MAX-DOAS tropospheric NO<sub>2</sub> measurements (April and July 2015); (<b>b</b>) BEHR-HK v3.0A tropospheric NO<sub>2</sub> VCD vs. MAX-DOAS tropospheric NO<sub>2</sub> measurements (April and July 2015); (<b>c</b>) BEHR-HK v3.0B tropospheric NO<sub>2</sub> VCD vs. MAX-DOAS tropospheric NO<sub>2</sub> measurements (April and July 2015); and (<b>d</b>) BEHR-HK v3.0C tropospheric NO<sub>2</sub> VCD vs. MAX-DOAS tropospheric NO<sub>2</sub> measurements (April and July 2015). Pixel filtering is conducted in July for BEHR-HK v3.0B datasets; <span class="html-italic">y</span> = <span class="html-italic">x</span> line is shown in blue; units for all axes are molecules/cm<sup>2</sup>; dots correspond to valid data pairs for the same dates within April and July 2015.</p> "> Figure 11
<p>Bar chart showing number of dates within certain percentage differences when compared with MAX-DOAS tropospheric measurements within April and July 2015 for OMI-NASA (dark blue), BEHR-HK v3.0A (blue), BEHR-HK v3.0B (green), and BEHR-HK v3.0C (yellow). Pixel filtering is adopted for BEHR-HK v3.0B datasets within July 2015.</p> ">
Abstract
:1. Introduction
2. Methodologies for Satellite Retrieval
2.1. Principles of NO2 Remote Sensing
2.2. BEHR Algorithm for NO2 Column Retrieval
2.2.1. Calculation of AMF and Tropospheric VCDs
2.2.2. Differences in BEHR-HK v3.0A, v3.0B and v3.0C Retrieval
2.3. CMAQ Tropospheric VCD Simulation
3. Study Areas and Datasets
3.1. Region of Interest
3.2. Datasets
3.3. Grid Formation and Decomposition
4. Results
4.1. Comparison of OMI-NASA, BEHR-HK and WRF-CMAQ VCDs
4.2. BEHR-HK v3.0C vs. OMI-NASA NO2 VCD
5. Correction of BEHR-HK v3.0B and Improvement to v3.0C
5.1. Causes of Abnormally Large VCDs in BEHR-HK v3.0B
5.2. BEHR-HK v3.0B vs. BEHR-HK v3.0C
6. Discussion
6.1. MAX-DOAS Validation in Guangzhou
6.2. Numerical Uncertainties of Each Satellite Retrieval Method
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, W.; Qian, C.N.; Zeng, Y.X. Air pollution: A smoking gun for cancer. Chin. J. Cancer 2014, 33, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.S.; Phalkey, R.; Malik, A.A. A systematic review of air pollution as a risk factor for cardiovascular disease in South Asia: Limited evidence from India and Pakistan. Int. J. Hyg. Environ. Health 2014, 217, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Cools, N.; De Vos, B. Availability and evaluation of European forest soil monitoring data in the study on the effects of air pollution on forests. iForest Biogeosci. For. 2011, 4, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Van Breemen, N.; Driscoll, C.T.; Mulder, J. Acid deposition and internal proton sources in acidification of soils and waters. Nature 1984, 307, 599–604. [Google Scholar] [CrossRef]
- Leibbensperger, E.M.; Mickley, L.J.; Jacob, D.J.; Barrett, S.R.H. Intercontinental influence of NOx and CO emissions on particulate matter air quality. Atmos. Environ. 2011, 45, 3318–3324. [Google Scholar] [CrossRef]
- The International Council on Clean Transportation. NOx Emissions from Heavy-Duty and Light-Duty Diesel Vehicles in the EU: Comparison of Real-World Performance and Current Type-Approval Requirements. 2016. Available online: https://www.theicct.org/sites/default/files/publications/Euro-VI-versus-6_ICCT_briefing_06012017.pdf (accessed on 10 August 2018).
- Murray, L.T. Lightning NOx and Impacts on Air Quality. Curr. Pollut. Rep. 2016, 2, 115–133. [Google Scholar] [CrossRef]
- Meredith, H.; Hiram, L.; Gregory, C. Impacts of biomass burning on tropospheric CO, NOx, and O3. J. Geophys. Res. 2000, 105, 6633–6654. [Google Scholar] [CrossRef]
- Crutzen, P.J. The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Annu. Rev. Earth Planet. Sci. 1979, 7, 443–472. [Google Scholar] [CrossRef]
- Hagenbjork, A.; Malmqvist, E.; Mattisson, K.; Sommar, N.J.; Modig, L. The spatial variation of O3, NO, NO2 and NOx and the relation between them in two Swedish cities. Environ. Monit. Assess. 2017, 189, 161. [Google Scholar] [CrossRef] [PubMed]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley: New York, NY, USA, 1998; pp. 545–595. ISBN 978-1-118-94740-1. [Google Scholar]
- Finlayson-Pitts, B.J.; Pitts, J.N., Jr. Chemistry of Upper and Lower Atmosphere: Theory, Experiments and Applications; Academic Press: San Diego, CA, USA, 1999; ISBN 978-0-12-257060-5. [Google Scholar]
- Notice of the Ministry of Environmental Protection on Issuing the General Planning for the Development of Environmental Protection Legislation and Environmental Economic Policies in China during the 12th Five-Year Plan Period. January 2011. Available online: http://www.gov.cn/zwgk/2011-09/07/content_1941731.htm (accessed on 30 August 2018). (In Chinese)
- Notice of the Ministry of Environmental Protection on Issuing the General Planning for the Development of Environmental Protection Legislation and Environmental Economic Policies in China during the 13th Five-Year Plan Period. January 2016. Available online: http://www.ndrc.gov.cn/gzdt/201701/t20170105_834501.html (accessed on 30 August 2018). (In Chinese)
- Ma, Z.; Hu, X.; Huang, L.; Bi, J.; Liu, Y. Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing. Environ. Sci. Technol. 2014, 48, 7436–7444. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Yu, T.; Cheng, T.; Gu, X.; Guo, H. Intercomparison of tropospheric nitrogen dioxide retrieved from Ozone Monitoring Instrument over China. Atmos. Pollut. Res. 2014, 5, 686–695. [Google Scholar] [CrossRef]
- Liu, M.; Lin, J.; Wang, Y.; Sun, Y.; Zheng, B.; Shao, J.; Chen, L.; Zheng, Y.; Chen, J.; Fu, T.M.; et al. Spatiotemporal variability of NO2 and PM2.5 over Eastern China: Observational and model analyses with a novel statistical method. Atmos. Chem. Phys. 2018, 18, 12933–12952. [Google Scholar] [CrossRef]
- Provincial Environmental Monitoring Centre Environmental Protection Department, Hong Kong SARG Environmental Protection Bureau, Macao SARG Meteorological and Geophysical Bureau, Macao SARG. Guangdong-Hong Kong-Macao Pearl River Delta Regional Air Quality Monitoring Network—A Report of Monitoring Results in 2014, PRDAIR-2014-5. Available online: http://www.smg.gov.mo/smg/airQuality/pdf/PRD_2014_report_TC.pdf (accessed on 15 March 2018). (In Chinese)
- Shonnard, D.R.; Chang, D.P.Y.; Bell, R.L. An Inversion Algorithm for Determining Area-Source Emissions from Downwind Concentration Measurements. Air Waste 1994, 44, 1204–1213. [Google Scholar] [CrossRef]
- You, W.; Zang, Z.; Zhang, L.; Zhang, M.; Pan, X.; Li, Y. A nonlinear model for estimating ground-level PM10 concentration in Xi’an using MODIS aerosol optical depth retrieval. Atmos. Res. 2016, 168, 169–179. [Google Scholar] [CrossRef]
- Burrows, J.P.; Weber, M.; Buchwitz, M.; Rozanov, V.; Weibenmayer, A.L.; Richter, A.; Debeek, R.; Hoogen, R.; Bramstedt, K.; Eichmann, K.; et al. The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results. J. Atmos. Sci. 1999, 56, 151–175. [Google Scholar] [CrossRef] [Green Version]
- Valin, L.C.; Russell, A.R.; Cohen, R.C. Variations of OH radical in an urban plume inferred from NO2 column measurements. Geophys. Res. Lett. 2013, 40, 1856–1860. [Google Scholar] [CrossRef]
- Valin, L.C.; Russell, A.R.; Cohen, R.C. Chemical feedback effects on the spatial patterns of the NOx weekend effect. Atmos. Chem. Phys. 2014, 14, 1–9. [Google Scholar] [CrossRef]
- Russell, A.R.; Perring, A.E.; Valin, L.C.; Bucsela, E.; Browne, E.C.; Min, K.-E.; Wooldridge, P.J.; Cohen, R.C. A high spatial resolution retrieval of NO2 column densities from OMI: Method and evaluation. Atmos. Chem. Phys. 2011, 11, 8543–8554. [Google Scholar] [CrossRef]
- McLinden, C.A.; Fioletov, V.; Boersma, K.F.; Kharol, S.K.; Krotkov, N.; Lamsal, L.; Makar, P.A.; Martin, R.V.; Veefkind, J.P.; Yang, K. Improved satellite retrievals of NO2 and SO2 over the Canadian oil sands and comparisons with surface measurements. Atmos. Chem. Phys. 2014, 14, 3637–3656. [Google Scholar] [CrossRef]
- Lin, J.-T.; Martin, R.V.; Boersma, K.F.; Sneep, M.; Stammes, P.; Spurr, R.; Wang, P.; Van Roozendael, M.; Clémer, K.; Irie, H. Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: Effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide. Atmos. Chem. Phys. 2014, 14, 1441–1461. [Google Scholar] [CrossRef] [Green Version]
- Kuhlmann, G.; Lam, Y.F.; Cheung, H.M.; Hartl, A.; Fung, J.C.H.; Chan, P.W.; Wenig, M.O. Development of a custom OMI NO2 data product for evaluating biases in a regional chemistry transport model. Atmos. Chem. Phys. 2015, 15, 5627–5644. [Google Scholar] [CrossRef]
- Laughner, J.L.; Zhu, Q.; Cohen, R.C. The Berkeley High Resolution Tropospheric NO2 Product. Earth Syst. Sci. Data Discuss. 2018. [Google Scholar] [CrossRef]
- Laughner, J.L.; Cohen, R.C. The Next-generation Berkeley High Resolution NO2 (BEHR NO2) Retrieval: Design and Preliminary Emissions Constraints. In Proceedings of the American Geophysical Union, Fall Meeting, New Orleans, LA, USA, 11–15 December 2017. [Google Scholar]
- Laughner, J.L.; Zare, A.; Cohen, R.C. Effects of daily meteorology on the interpretation of space-based remote sensing of NO2. Atmos. Chem. Phys. 2016, 16, 15247–15264. [Google Scholar] [CrossRef]
- Bucsela, E.J.; Krotkov, N.A.; Celarier, E.A.; Lamsal, L.N.; Swartz, W.H.; Bhartia, P.K.; Boersma, K.F.; Veefkind, J.P.; Gleason, J.F.; Pickering, K.E. A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: Applications to OMI. Atmos. Meas. Tech. 2013, 6, 2607–2626. [Google Scholar] [CrossRef]
- Lee, C.; Martin, R.V.; van Donkelaar, A.; Richter, A.; Burrows, J.P.; Kim, Y.J. Remote Sensing of Tropospheric Trace Gases (NO2 and SO2) from SCIAMACHY. In Atmospheric and Biological Environmental Monitoring; Kim, Y.J., Platt, U., Gu, M.B., Iwahashi, H., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 63–72. ISBN 978-971-4020-9673-0. [Google Scholar]
- Marchenko, S.; Krotkov, N.A.; Lamsal, L.N.; Celarier, E.A.; Swartz, W.H.; Bucsela, E.J. Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument. J. Geophys. Res. Atmos. 2015, 120. [Google Scholar] [CrossRef] [PubMed]
- Boersma, K.F.; Eskes, H.J.; Dirksen, R.J.; Veefkind, J.P.; Stammes, P.; Huijnen, V.; Kleipool, Q.L.; Sneep, M.; Claas, J.; Leitão, J.; et al. An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument. Atmos. Meas. Tech. 2011, 4, 1905–1928. [Google Scholar] [CrossRef]
- Palmer, P.I.; Jacob, D.J.; Chance, K.; Martin, R.V.; Spurr, R.J.D.; Kurosu, T.P.; Bey, I.; Yantosca, R.; Fiore, A.; Li, Q. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment. J. Geophys. Res. 2001, 106, 14539. [Google Scholar] [CrossRef]
- Krotkov, N.A.; Lamsal, L.N.; Celarier, E.A.; Swartz, W.H.; Marchenko, S.V.; Bucsela, E.J.; Chan, K.L.; Wenig, M.; Zara, M. The version 3 OMI NO2 standard product. Atmos. Meas. Tech. 2017, 10, 3133–3149. [Google Scholar] [CrossRef]
- Laughner, J.L.; Zhu, Q.; Cohen, R.C. Evaluation of version 3.0B of the BEHR OMI NO2 product. Atmos. Meas. Tech. Discuss. 2018. [Google Scholar] [CrossRef]
- Krotkov, N.A.; Veefkind, P. OMI/Aura Nitrogen Dioxide (NO2) Total and Tropospheric Column 1-Orbit L2 Swath 13 × 24 km V003; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2016. [CrossRef]
- MODIS Bidirectional Reflectance Distribution Function (BRDF)/Albedo Parameter. Available online: https://modis.gsfc.nasa.gov/data/dataprod/mod43.php (accessed on 5 March 2017).
- Global Land One-Kilometer Base Elevation (GLOBE) v.1. Available online: https://data.noaa.gov//metaview/page?xml=NOAA/NESDIS/NGDC/MGG/DEM/iso/xml/280.xml&view=getDataView&header=none (accessed on 5 March 2017).
- Version 3 Aura Ozone Monitoring Instrument (OMI) Nitrogen Dioxide (NO2) Standard Product (OMNO2). Available online: https://mirador.gsfc.nasa.gov/collections/OMNO2__003.shtml (accessed on 10 August 2018).
- Zhou, Y.; Brunner, D.; Boersma, K.F.; Dirksen, R.; Wang, P. An improved tropospheric NO2 retrieval for OMI observations in the vicinity of mountainous terrain. Atmos. Meas. Tech. 2009, 2, 401–416. [Google Scholar] [CrossRef]
- WMO. International Meteorological Vocabulary, 2nd ed.; World Meteorological Organization: Geneva, Switzerland, 1992; p. 636. [Google Scholar]
- The Berkeley High-Resolution NO2 Product. Available online: http://behr.cchem.berkeley.edu/TheBEHRProduct.aspx (accessed on 5 March 2017).
- Berkeley High Resolution (BEHR) NO2 Product Changelog. Available online: http://behr.cchem.berkeley.edu/Portals/2/Changelog.txt (accessed on 3 October 2018).
- Otte, T.L.; Pleim, J.E. The Meteorology-Chemistry Interface Processor (MCIP) for the CMAQ modeling system: Updates through MCIPv3.4.1. Geosci. Model. Dev. 2010, 3, 243–256. [Google Scholar] [CrossRef]
- SMOKE: (Sparse Matrix Operator Kerner Emissions) Modeling System. Available online: https://www.cmascenter.org/smoke/ (accessed on 10 August 2017).
- Liu, H.P.; Chan, J.C.L; Cheng, A.Y.S. Internal boundary layer structure under sea-breeze conditions in Hong Kong. Atmos. Environ. 2001, 35, 683–692. [Google Scholar] [CrossRef]
- Miao, J.F.; Kroon, L.J.M; de Arellano, J.V.G.; Holtslag, A.A.M. Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteorol. Atmos. Phys. 2003, 84, 157–170. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, H.; Chen, M.; Yang, L. Scale matching of multiscale digital elevation model (DEM) data and the Weather Research and Forecasting (WRF) model: A case study of meteorological simulation in Hong Kong. Arab. J. Geosci. 2014, 7, 1–9. [Google Scholar] [CrossRef]
- Wu, D.W.; Fung, J.C.H.; Yao, T.; Lau, A.K.H. Study of control policy in the Pearl River Delta region by using particulate matter source apportionment method. Atmos. Environ. 2013, 76, 147–161. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Dudhia, J.; Hong, S.Y.; Lim, K.S. A new method for representing mixed-phase particle fall speeds in bulk microphysics parameterizations. J. Meteorol. Soc. Jpn. 2008, 86A, 33–44. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- World Urban Database, Geopedia of Guangzhou. Available online: https://geopedia.world/#T4_L107_x12620899.92530688_y2642447.177075616_s11_b17 (accessed on 12 September 2018).
- Laughner, J.L; Cohen, R.C. Quantification of the effect of modeled lightning NO2 on UV–visible air mass factors. Atmos. Meas. Tech. 2017, 10, 4403–4419. [Google Scholar] [CrossRef]
- Boersma, K.F.; Bucsela, E.J.; Brinksma, E.J.; Gleason, J.F. NO2. In OMI Algorithm Theoretical Basis Document, Volume 4, OMI Trace Gas Algorithms; ATB-OMI-04, Version 2.0; Chance, K., Ed.; NASA Distrib. Active Archive Cent.: Greenbelt, MD, USA, 2002; pp. 13–36. [Google Scholar]
- Zhou, K.; Ye, Y.; Liu, Q.; Liu, A.; Peng, S. Evaluation of ambient air quality in Guangzhou. China J. Environ. Sci. 2007, 19, 432–437. [Google Scholar] [CrossRef]
- Drosoglou, T.; Koukouli, M.E.; Kouremeti, N.; Bais, A.F.; Zyrichidou, I.; Balis, D.; Xu, J.; Li, A. MAX-DOAS NO2 observations over Guangzhou, China; ground-based and satellite comparison. Atmos. Meas. Tech. 2018, 11, 2239–2255. [Google Scholar] [CrossRef]
- Drosoglou, T.; Bais, A.F.; Zyrichidou, I.; Kouremeti, N.; Poupkou, A.; Liora, N.; Giannaros, C.; Koukouli, M.E.; Balis, D.; Melas, D. Comparisons of ground-based tropospheric NO2 MAX-DOAS measurements to satellite observations with the aid of an air quality model over the Thessaloniki area, Greece. Atmos. Chem. Phys. 2017, 17, 5829–5849. [Google Scholar] [CrossRef]
Attribute | Description | Units | Array Structures and Size (x, y, z) | Dataset/Product Name |
---|---|---|---|---|
T | Perturbation potential temperature | K | 3D array: 222 × 162 ×38 | WRF D2 1 |
P | Perturbation pressure | Pa | 3D array: 222 × 162 × 38 | WRF D2 |
PB | Base state pressure | Pa | 3D array: 222 × 162 ×38 | WRF D2 |
PH | Perturbation geopotential | m2 s−2 | 3D array: 222 × 162 ×39 | WRF D2 |
PHB | Base-state geopotential | m2 s−2 | 3D array: 222 × 162 ×39 | WRF D2 |
NO2 | Nitrogen dioxide | ppmv | 3D array: 98 × 74 × 25 | CMAQ D2 |
Albedo | MODIS BRDF reflectance from MCD43D07-09 2 [39] | |||
Terrain pressure | GLOBE v.1 [40] | |||
NO2 tropospheric SCD | NO2 tropospheric column density | molecules/cm2 | Depends | NASA OMI NO2 SP v3.0 3 [41] |
f | Cloud Radiance Fraction | NASA OMI NO2 SP v3.0 3 [41] |
Date (and Time) | No. of Affected Pixels (Out of 8181) | Detailed Numerical Descriptions |
---|---|---|
15 July 2015 (0600 UTC) | 3 | 2 of them >1017 molecules/cm2 |
18 July 2015 (0500 and 0600 UTC) | 20 (for 0500 UTC) 31 (for 0600 UTC) | All of them >1019 molecules/cm2, with 12 and 9 pixels >1020 molecules/cm2 in 0500 UTC and 0600 UTC respectively |
22 July 2015 (0600 UTC) | 23 | All of them >1019 molecules/cm2, with 15 pixels >1020 molecules/cm2 |
23 July 2015 (0500 UTC) | 57 | All of them >1019 molecules/cm2, with 41 pixels >1020 molecules/cm2 |
26 July 2015 (0600 UTC) | 20 | All of them >1019 molecules/cm2, with 13 pixels >1020 molecules/cm2 |
30 July 2015 (0500 UTC) | 12 | All of them >1019 molecules/cm2, with 10 pixels >1020 molecules/cm2 |
Month | Equation of Best-Fit Line (y = mx + c) | t-Stat | Pearson Correlation Coefficient (R) | RMSE (Molecules/cm2) |
---|---|---|---|---|
January 2015 | m = 0.713 c = 1.778 × 1013 | 1213.3 | 0.9958 | 2.55 × 1014 |
April 2015 | m = 0.926 c = −3.623 × 1013 | 1809.9 | 0.9983 | 1.16 × 1014 |
July 2015 1 | (Before filtering) | |||
m = 0.123 c = 1.025 × 1016 | 2.835 | 0.0123 | 8.37 × 1015 | |
(After filtering) | ||||
m = 0.7519 c = 5.029 × 1012 | 482.7 | 0.9728 | 2.82 × 1014 | |
October 2015 | m = 0.782 c = −1.195 × 1013 | 579.6 | 0.9806 | 3.06 × 1014 |
Satellite Retrieval Algorithm | Equation of Best-Fit Line (y = mx + c) | t-Stat | p-Value | Pearson Correlation Coefficient (R) | RMSE (Molecules/cm2) |
---|---|---|---|---|---|
OMI-NASA | m = 0.4323 c = −7.391 × 1014 | 12.36 | 7.334 × 10−13 | 0.7644 | 8.961 × 1015 |
BEHR-HK v3.0A | m = 0.8548 c = 1.883 × 1015 | 19.22 | 1.152 × 10−17 | 0.8468 | 6.055 × 1015 |
BEHR-HK v3.0B | m = 0.9121 c = 3.954 × 1014 | 29.80 | 9.469 × 10−23 | 0.9338 | 3.920 × 1015 |
BEHR-HK v3.0C | m = 0.9947 c = −9.679 × 1014 | 57.72 | 1.172 × 10−30 | 0.9839 | 2.083 × 1015 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mak, H.W.L.; Laughner, J.L.; Fung, J.C.H.; Zhu, Q.; Cohen, R.C. Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF): Case Study of Southern China. Remote Sens. 2018, 10, 1789. https://doi.org/10.3390/rs10111789
Mak HWL, Laughner JL, Fung JCH, Zhu Q, Cohen RC. Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF): Case Study of Southern China. Remote Sensing. 2018; 10(11):1789. https://doi.org/10.3390/rs10111789
Chicago/Turabian StyleMak, Hugo Wai Leung, Joshua L. Laughner, Jimmy Chi Hung Fung, Qindan Zhu, and Ronald C. Cohen. 2018. "Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF): Case Study of Southern China" Remote Sensing 10, no. 11: 1789. https://doi.org/10.3390/rs10111789
APA StyleMak, H. W. L., Laughner, J. L., Fung, J. C. H., Zhu, Q., & Cohen, R. C. (2018). Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF): Case Study of Southern China. Remote Sensing, 10(11), 1789. https://doi.org/10.3390/rs10111789