Optimization of Airborne Antenna Geometry for Ocean Surface Scatterometric Measurements
"> Figure 1
<p>Simulation results for a four-beam star geometry (<span class="html-italic">N</span> = 4) with the beam directions of 0°, 90°, 180°, and 270° relative to the aircraft course with an assumption of 0.1 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 30° with 5000 averaged NRCS samples for each azimuthal angle.</p> "> Figure 2
<p>Simulation results for a four-beam star geometry (<span class="html-italic">N</span> = 4) with the beam directions of 0°, 90°, 180°, and 270° relative to the aircraft course with an assumption of 0.2 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 45° with 1565 averaged NRCS samples for each azimuthal angle.</p> "> Figure 3
<p>Simulation results for a four-beam star geometry (<span class="html-italic">N</span> = 4) with the beam directions of 0°, 90°, 180°, and 270° relative to the aircraft course with an assumption of 0.2 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 60° with 1565 averaged NRCS samples for each azimuthal angle.</p> "> Figure 4
<p>Simulation results for a 72-beam star geometry (<span class="html-italic">N</span> = 72) with the beam directions of 0 to 355° with a 5° increment relative to the aircraft course with an assumption of 0.1 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 30° with 278 averaged NRCS samples for each azimuthal angle.</p> "> Figure 5
<p>Simulation results for a 72-beam star geometry (<span class="html-italic">N</span> = 72) with the beam directions of 0 to 355° with a 5° increment relative to the aircraft course with an assumption of 0.2 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 45° with 87 averaged NRCS samples for each azimuthal angle.</p> "> Figure 6
<p>Simulation results for a 72-beam star geometry (<span class="html-italic">N</span> = 72) with the beam directions of 0 to 355° with a 5° increment relative to the aircraft course with an assumption of 0.2 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 60° with 87 averaged NRCS samples for each azimuthal angle.</p> "> Figure 7
<p>Wind direction (<b>a</b>) and speed estimation (<b>b</b>) errors for all considered antenna geometry configurations averaged over all azimuth angles assuming negligible instrumental measurement error. Data obtained by Monte-Carlo simulations with 1000 independent configurations for the incidence angle of 30° and the selected wind speeds of 4, 8, 12, and 16 m/s, respectively.</p> "> Figure 8
<p>Wind direction (<b>a</b>) and speed estimation (<b>b</b>) errors for all considered antenna geometry configurations averaged over all azimuth angles assuming 0.1 dB instrumental measurement error. Data obtained by Monte-Carlo simulations with 1000 independent configurations for the incidence angle of 30° and the selected wind speeds of 4, 8, 12, and 16 m/s, respectively.</p> "> Figure 9
<p>The ratio of the error variances <math display="inline"> <semantics> <mrow> <mi>D</mi> <mrow> <mo>{</mo> <mi>G</mi> <mo>}</mo> </mrow> <mo>/</mo> <mi>D</mi> <mo>{</mo> <msup> <mi>σ</mi> <mo>∘</mo> </msup> <mo>}</mo> </mrow> </semantics> </math> obtained by numerical treatment and approximations based on the quasi linear theory of error propagation (averaged over different azimuthal directions, like in <a href="#remotesensing-10-01501-f007" class="html-fig">Figure 7</a> and <a href="#remotesensing-10-01501-f008" class="html-fig">Figure 8</a>, respectively).</p> "> Figure 10
<p>Relative computational times required by the wind vector retrieval algorithms normalized to the average times required by the simplest four-beam X-configuration. Circles show the results of 1000 test iterations of the retrieval algorithm only for each antenna geometry configuration, while the squares denote the total time taken by the entire simulation algorithm that contains both NRCS simulations and the wind retrieval algorithm. As the complexity of different parts of the algorithm increases differently with an increasing the number of beams, dashed lines showing exponential fits for the asymptotic behavior, indicating different asymptotic slopes.</p> "> Figure A1
<p>Simulation results for a five-beam star geometry (<span class="html-italic">N</span> = 5) with the beam directions of 0°, 72°, 144°, 216°, and 288° relative to the aircraft course with an assumption of 0.1 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 30° with 4000 averaged NRCS samples for each azimuthal angle.</p> "> Figure A2
<p>Simulation results for a five-beam star geometry (<span class="html-italic">N</span> = 5) with the beam directions of 0°, 72°, 144°, 216°, and 288° relative to the aircraft course with an assumption of 0.2 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 45° with 1252 averaged NRCS samples for each azimuthal angle.</p> "> Figure A3
<p>Simulation results for a five-beam star geometry (<span class="html-italic">N</span> = 5) with the beam directions of 0°, 72°, 144°, 216°, and 288° relative to the aircraft course with an assumption of 0.2 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 60° with 1252 averaged NRCS samples for each azimuthal angle.</p> "> Figure A4
<p>Simulation results for a six-beam star geometry (<span class="html-italic">N</span> = 6) with the beam directions of 0°, 60°, 120°, 180°, 240°, and 300° relative to the aircraft course with an assumption of 0.1 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 30° with 3333 averaged NRCS samples for each azimuthal angle.</p> "> Figure A5
<p>Simulation results for a six-beam star geometry (<span class="html-italic">N</span> = 6) with the beam directions of 0°, 60°, 120°, 180°, 240°, and 300° relative to the aircraft course with an assumption of 0.2 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 45° with 1044 averaged NRCS samples for each azimuthal angle.</p> "> Figure A6
<p>Simulation results for a six-beam star geometry (<span class="html-italic">N</span> = 6) with the beam directions of 0°, 60°, 120°, 180°, 240°, and 300° relative to the aircraft course with an assumption of 0.2 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 60° with 1044 averaged NRCS samples for each azimuthal angle.</p> "> Figure A7
<p>Simulation results for an eight-beam star geometry (<span class="html-italic">N</span> = 8) with the beam directions of 0°, 60°, 120°, 180°, 240°, and 300° relative to the aircraft course with an assumption of 0.1 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 30° with 2500 averaged NRCS samples for each azimuthal angle.</p> "> Figure A8
<p>Simulation results for an eight-beam star geometry (<span class="html-italic">N</span> = 8) with the beam directions of 0°, 60°, 120°, 180°, 240°, and 300° relative to the aircraft course with an assumption of 0.2 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 45° with 783 averaged NRCS samples for each azimuthal angle.</p> "> Figure A9
<p>Simulation results for an eight-beam star geometry (<span class="html-italic">N</span> = 8) with the beam directions of 0°, 60°, 120°, 180°, 240°, and 300° relative to the aircraft course with an assumption of 0.2 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 60° with 783 averaged NRCS samples for each azimuthal angle.</p> "> Figure A10
<p>Simulation results for an eight-beam star geometry (<span class="html-italic">N</span> = 10) with the beam directions of 0°, 36°, 72°, 108°, 144°, 180°, 216°, 252°, 288°, and 324° relative to the aircraft course with an assumption of 0.1 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 30° with 2000 averaged NRCS samples for each azimuthal angle.</p> "> Figure A11
<p>Simulation results for a ten-beam star geometry (<span class="html-italic">N</span> = 10) with the beam directions of 0°, 36°, 72°, 108°, 144°, 180°, 216°, 252°, 288°, and 324° relative to the aircraft course with an assumption of 0.2 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 45° with 626 averaged NRCS samples for each azimuthal angle.</p> "> Figure A12
<p>Simulation results for a ten-beam star geometry (<span class="html-italic">N</span> = 10) with the beam directions of 0°, 36°, 72°, 108°, 144°, 180°, 216°, 252°, 288°, and 324° relative to the aircraft course with an assumption of 0.2 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 60° with 626 averaged NRCS samples for each azimuthal angle.</p> "> Figure A13
<p>Simulation results for a thirty-six-beam star geometry (<span class="html-italic">N</span> = 36) with the beam directions of 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°, 110°, 120°, 130°, 140°, 150°, 160°, 170°, 180°, 190°, 200°, 210°, 220°, 230°, 240°, 250°, 260°, 270°, 280°, 290°, 300°, 310°, 320°, 330°, 340°, and 350° relative to the aircraft course with an assumption of 0.1 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 30° with 556 averaged NRCS samples for each azimuthal angle.</p> "> Figure A14
<p>Simulation results for a thirty-six-beam star geometry (<span class="html-italic">N</span> = 36) with the beam directions of 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°, 110°, 120°, 130°, 140°, 150°, 160°, 170°, 180°, 190°, 200°, 210°, 220°, 230°, 240°, 250°, 260°, 270°, 280°, 290°, 300°, 310°, 320°, 330°, 340°, and 350° relative to the aircraft course with an assumption of 0.2 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 45° with 174 averaged NRCS samples for each azimuthal angle.</p> "> Figure A15
<p>Simulation results for a thirty-six-beam star geometry (<span class="html-italic">N</span> = 36) with the beam directions of 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°, 110°, 120°, 130°, 140°, 150°, 160°, 170°, 180°, 190°, 200°, 210°, 220°, 230°, 240°, 250°, 260°, 270°, 280°, 290°, 300°, 310°, 320°, 330°, 340°, and 350° relative to the aircraft course with an assumption of 0.2 dB instrumental noise at the wind speeds of 2–20 m/s for the incidence angle of 60° with 174 averaged NRCS samples for each azimuthal angle.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fung, A.K. Backscattering from Multiscale Rough Surfaces with Application to Wind Scatterometry; Artech House: Norwood, MA, USA, 2015; p. 328. ISBN 13:978-1-63081-000-9. [Google Scholar]
- Nekrasov, A.; Dell’Acqua, F. Airborne Weather Radar: A theoretical approach for water-surface backscattering and wind measurements. IEEE Geosci. Remote Sens. Mag. 2016, 16, 38–50. [Google Scholar] [CrossRef]
- Spencer, M.W.; Graf, J.E. The NASA scatterometer (NSCAT) mission. Backscatter 1997, 8, 18–24. [Google Scholar]
- Moore, R.K.; Fung, A.K. Radar determination of winds at sea. Proc. IEEE 1979, 67, 1504–1521. [Google Scholar] [CrossRef]
- Masuko, H.; Okamoto, K.; Shimada, M.; Niwa, S. Measurement of microwave backscattering signatures of the ocean surface using X band and Ka band airborne scatterometers. J. Geophys. Res. Oceans 1986, 91, 13065–13083. [Google Scholar] [CrossRef]
- Wismann, V. Messung der Windgeschwindigkeit über dem Meer mit einem flugzeuggetragenen 5.3 GHz Scatterometer. Ph.D. Thesis, Universität 472 Bremen, Bremen, Germany, 1989; p. 119 S. (In German). [Google Scholar]
- Hildebrand, P.H. Estimation of sea-surface wind using backscatter cross-section measurements from airborne research weather radar. IEEE Trans. Geosci. Remote Sens. 1994, 32, 110–117. [Google Scholar] [CrossRef]
- Carswell, J.R.; Carson, S.C.; McIntosh, R.E.; Li, F.K.; Neumann, G.; McLaughlin, D.J.; Wilkerson, J.C.; Black, P.G.; Nghiem, S.V. Airborne scatterometers: Investigating ocean backscatter under low-and high-wind conditions. Proc. IEEE 1994, 82, 1835–1860. [Google Scholar] [CrossRef]
- Kramer, H.J. Observation of the Earth and its Environment: Survey of Missions and Sensors, 4th ed.; Springer: Berlin, Germany, 2002. [Google Scholar]
- Jones, W.L. Progress in scatterometer application. J. Oceanogr. 2002, 58, 121–136. [Google Scholar]
- Karaev, V.Y.; Kanevsky, M.B.; Balandina, G.N.; Meshkov, E.M.; Challenor, P.; Srokosz, M.; Gommenginger, C. A rotating knife-beam altimeter for wide-swath remote sensing of ocean: Wind and waves. Sensors 2006, 6, 620–642. [Google Scholar] [CrossRef]
- Njoku, E.G. Encyclopedia of Remote Sensing; Springer: New York, NY, USA, 2014; p. 939. ISBN 978-0-387-36698-2. [Google Scholar]
- Fois, F.; Hoogeboom, P.; Le Chevalier, F.; Stoffelen, A. Future ocean scatterometry: On the use of cross-polar scattering to observe very high winds. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5009–5020. [Google Scholar] [CrossRef]
- Karaev, V.; Panfilova, M.; Titchenko, Y.; Meshkov, E.; Balandina, G. Retrieval of the near-surface wind velocity and direction: SCAT-3 orbit-borne scatterometer. Radiophys. Quantum Electron. 2016, 59, 259–269. [Google Scholar] [CrossRef]
- Hauser, D.; Tison, C.; Amiot, T.; Delaye, L.; Corcoral, N.; Castillan, P. SWIM: The first spaceborne wave scatterometer. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3000–3014. [Google Scholar] [CrossRef]
- Rodríguez, E.; Wineteer, A.; Perkovic-Martin, D.; Gál, T.; Stiles, B.W.; Niamsuwan, N.; Rodriguez Monje, R. Estimating ocean vector winds and currents using a Ka-band pencil-beam Doppler scatterometer. Remote Sens. 2018, 10, 576. [Google Scholar] [CrossRef]
- Nekrassov, A. On airborne measurement of the sea surface wind vector by a scatterometer (altimeter) with a nadir-looking wide-beam antenna. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2111–2116. [Google Scholar] [CrossRef]
- Nekrasov, A.; Khachaturian, A.; Veremyev, V.; Bogachev, M. Sea surface wind measurement by airborne weather radar scanning in a wide-size sector. Atmosphere 2016, 7, 72. [Google Scholar] [CrossRef]
- Nekrasov, A.; Khachaturian, A.; Veremyev, V.; Bogachev, M. Sea wind measurement by Doppler navigation system with x-configured beams at rectilinear fight. Remote Sens. 2017, 17, 887. [Google Scholar] [CrossRef]
- Khachaturian, A.; Nekrasov, A.; Bogachev, M. Sea wind parameters retrieval using Y-configured Doppler navigation system data. Performance and accuracy. J. Phys. Conf. Ser. 2018, 1015, 032058. [Google Scholar] [CrossRef]
- Hans, P. Auslegung und Analyse von satellitengetragenen Mikrowellensensorsystemen zur Windfeldmessung (Scatterometer) über dem Meer und Vergleich der Meßverfahren in Zeit- und Frequenzebene. Von der Fakultät 2 Bauingenieur- und Vermessungswesen der Universität Stuttgart zur Erlangung der Würde eines Doktor-Ingenieurs genehmigte Abhandlung. Ph.D. Thesis, Institut für Navigation der Universität Stuttgart, Stuttgart, Germany, 1987; p. 225 S. (In German). [Google Scholar]
- Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janssen, P.A.E.M. Dynamics and Modelling of Ocean Waves; Cambridge University Press: Cambridge, UK, 1994; p. 532. [Google Scholar]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Pasive, Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory; Addison-Wesley: London, UK, 1982; p. 1064. [Google Scholar]
- Labun, J.; Soták, M.; Kurdel, P. Technical note innovative technique of using the radar altimeter for prediction of terrain collision threats. J. Am. Helicopter Soc. 2012, 57, 85–87. [Google Scholar] [CrossRef]
- Kayton, M.; Fried, W.R. Avionics Navigation Systems; John Wieley & Sons: New York, NY, USA, 1997; p. 773. ISBN 0-471-54795-6. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nekrasov, A.; Khachaturian, A.; Abramov, E.; Popov, D.; Markelov, O.; Obukhovets, V.; Veremyev, V.; Bogachev, M. Optimization of Airborne Antenna Geometry for Ocean Surface Scatterometric Measurements. Remote Sens. 2018, 10, 1501. https://doi.org/10.3390/rs10101501
Nekrasov A, Khachaturian A, Abramov E, Popov D, Markelov O, Obukhovets V, Veremyev V, Bogachev M. Optimization of Airborne Antenna Geometry for Ocean Surface Scatterometric Measurements. Remote Sensing. 2018; 10(10):1501. https://doi.org/10.3390/rs10101501
Chicago/Turabian StyleNekrasov, Alexey, Alena Khachaturian, Evgeny Abramov, Dmitry Popov, Oleg Markelov, Viktor Obukhovets, Vladimir Veremyev, and Mikhail Bogachev. 2018. "Optimization of Airborne Antenna Geometry for Ocean Surface Scatterometric Measurements" Remote Sensing 10, no. 10: 1501. https://doi.org/10.3390/rs10101501
APA StyleNekrasov, A., Khachaturian, A., Abramov, E., Popov, D., Markelov, O., Obukhovets, V., Veremyev, V., & Bogachev, M. (2018). Optimization of Airborne Antenna Geometry for Ocean Surface Scatterometric Measurements. Remote Sensing, 10(10), 1501. https://doi.org/10.3390/rs10101501