Improving Fractional Impervious Surface Mapping Performance through Combination of DMSP-OLS and MODIS NDVI Data
"> Figure 1
<p>The study area—China and selected ten cities in red squares.</p> "> Figure 2
<p>Framework of mapping fractional ISA distribution through combination of multisource remote sensing data (ISA—impervious surface area; NISI—Normalized Impervious Surface Index; HSI—Human Settlement Index; VANUI—Vegetation Adjusted Nighttime light Urban Index; NDVI—Normalized Difference Vegetation Index).</p> "> Figure 3
<p>A false color composite based on (<b>a</b>) OLSnor, NDVImax, and NISI as red, green, and blue; and corresponding digital values of (<b>b</b>) OLSnor, (<b>c</b>) NDVImax, and (<b>d</b>) NISI based on the line in the urban landscape of Beijing. (Note: OLSnor is the normalized DMSP-OLS image, and NDVImax is a composite of NDVI time series data using the maximum algorithm).</p> "> Figure 4
<p>Predicted impervious surface area distributions with the support vector regression method based on (<b>a</b>) HSI, (<b>b</b>) VANUI, and (<b>c</b>) NISI. Here (<b>a1</b>), (<b>b1</b>), and (<b>c1</b>) represent a typical location of impervious surface distribution corresponding to a, b, and c index respectively.</p> "> Figure 5
<p>The relationships between ISA estimates and reference data from different data sources and corresponding residual analysis results based on HSI (<b>a1</b>,<b>b1</b>), VANUI (<b>a2</b>,<b>b2</b>), and NISI (<b>a3</b>,<b>b3</b>).</p> "> Figure 6
<p>A comparison of estimated ISA among different cities based on four data sources.</p> ">
Abstract
:1. Introduction
2. Study Area and Datasets
3. Methods
3.1. Development of Impervious Surface Area Data from Landsat OLI Images
3.2. Preprocessing and Integration of DMSP-OLS and MODIS NDVI Data
3.3. Mapping Fractional Impervious Surface Area Distribution with Support Vector Regression
3.4. Evaluation of the Impervious Surface Area Estimation Results
4. Results
4.1. A Comparative Analysis of the Proposed Index and Individual OLSnor and NDVImax Data
4.2. Analysis of Impervious Surface Area Estimates
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cao, X.; Wang, J.; Chen, J.; Shi, F. Spatialization of electricity consumption of China using saturation-corrected DMSP-OLS data. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 193–200. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Zhang, Z.; Lu, D.; Xiang, B. Spatiotemporal dynamics of impervious surface areas across China during the early 21st century. Chin. Sci. Bull. 2012, 58, 1691–1701. [Google Scholar] [CrossRef]
- Schneider, A.; Chang, C.; Paulsen, K. The changing spatial form of cities in western China. Landsc. Urban Plan. 2015, 135, 40–61. [Google Scholar] [CrossRef]
- China–Population. Available online: http://countryeconomy.com/demography/population/china (accessed on 14 April 2017).
- Urbanization in China. Available online: https://en.wikipedia.org/wiki/Urbanization_in_China (accessed on 14 April 2017).
- Kaufmann, R.K.; Seto, K.C.; Schneider, A.; Liu, Z.; Zhou, L.; Wang, W. Climate response to rapid urban growth: Evidence of a human-induced precipitation deficit. J. Clim. 2007, 20, 2299–2306. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, Y.; Zhou, C.; Haynie, S.; Pei, T.; Xu, T. Night-time light derived estimation of spatiotemporal characteristics of urbanization dynamics using DMSP/OLS satellite data. Remote Sens. Environ. 2015, 158, 453–464. [Google Scholar] [CrossRef]
- Srinivasan, V.; Seto, K.C.; Emerson, R.; Gorelick, S.M. The impact of urbanization on water vulnerability: A coupled human–environment system approach for Chennai, India. Glob. Environ. Chang. 2013, 23, 229–239. [Google Scholar] [CrossRef]
- Xu, H.; Lin, D.; Tang, F. The impact of impervious surface development on land surface temperature in a subtropical city: Xiamen, China. Int. J. Climatol. 2013, 33, 1873–1883. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Kuang, W.; Chi, W.; Lu, D.; Dou, Y. A comparative analysis of megacity expansions in China and the U.S.: Patterns, rates and driving forces. Landsc. Urban Plan. 2014, 132, 121–135. [Google Scholar] [CrossRef]
- Mertes, C.M.; Schneider, A.; Sulla-Menashe, D.; Tatem, A.J.; Tan, B. Detecting change in urban areas at continental scales with MODIS data. Remote Sens. Environ. 2015, 158, 331–347. [Google Scholar] [CrossRef]
- Pandey, B.; Joshi, P.K.; Seto, K.C. Monitoring urbanization dynamics in India using DMSP/OLS night time lights and SPOT-VGT data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 49–61. [Google Scholar] [CrossRef]
- Schneider, A. Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sens. Environ. 2012, 124, 689–704. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Zhao, K.; Imhoff, M.; Thomson, A.; Bond-Lamberty, B.; Asrar, G.R.; Zhang, X.; He, C.; Elvidge, C.D. A global map of urban extent from nightlights. Environ. Res. Lett. 2015, 10, 054011. [Google Scholar] [CrossRef]
- Lu, D.; Li, G.; Kuang, W.; Moran, E. Methods to extract impervious surface areas from satellite images. Int. J. Digit. Earth 2013, 7, 93–112. [Google Scholar] [CrossRef]
- Lu, D.; Li, G.; Moran, E.; Batistella, M.; Freitas, C.C. Mapping impervious surfaces with the integrated use of Landsat thematic mapper and radar data: A case study in an urban–rural landscape in the Brazilian Amazon. ISPRS J. Photogramm. Remote Sens. 2011, 66, 798–808. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. Use of impervious surface in urban land-use classification. Remote Sens. Environ. 2006, 102, 146–160. [Google Scholar] [CrossRef]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Wu, C.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sens. Environ. 2003, 84, 493–505. [Google Scholar] [CrossRef]
- Elvidge, C.; Tuttle, B.; Sutton, P.; Baugh, K.; Howard, A.; Milesi, C.; Bhaduri, B.; Nemani, R. Global distribution and density of constructed impervious surfaces. Sensors 2007, 7, 1962–1979. [Google Scholar] [CrossRef]
- Ma, Q.; He, C.; Wu, J.; Liu, Z.; Zhang, Q.; Sun, Z. Quantifying spatiotemporal patterns of urban impervious surfaces in China: An improved assessment using nighttime light data. Landsc. Urban Plan. 2014, 130, 36–49. [Google Scholar] [CrossRef]
- Yang, Y.; He, C.; Zhang, Q.; Han, L.; Du, S. Timely and accurate national-scale mapping of urban land in China using defense meteorological satellite program’s operational Linescan system nighttime stable light data. APPRES 2013, 7, 073535. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Henderson, M.; Yeh, E.T.; Gong, P.; Elvidge, C.; Baugh, K. Validation of urban boundaries derived from global night-time satellite imagery. Int. J. Remote Sens. 2003, 24, 595–609. [Google Scholar] [CrossRef]
- Lawrence, W.T.; Imhoff, M.L.; Kerle, N.; Stutzer, D. Quantifying urban land use and impact on soils in Egypt using diurnal satellite imagery of the earth surface. Int. J. Remote Sens. 2010, 23, 3921–3937. [Google Scholar] [CrossRef]
- Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern china with multisensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- Ma, L.; Wu, J.; Li, W.; Peng, J.; Liu, H. Evaluating saturation correction methods for DMSP/OLS nighttime light data: A case study from China’s cities. Remote Sens. 2014, 6, 9853–9872. [Google Scholar] [CrossRef]
- Small, C.; Elvidge, C.D.; Balk, D.; Montgomery, M. Spatial scaling of stable night lights. Remote Sens. Environ. 2011, 115, 269–280. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K. Can night-time light data identify typologies of urbanization? A global assessment of successes and failures. Remote Sens. 2013, 5, 3476–3494. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques. ISPRS J. Photogramm. Remote Sens. 2013, 86, 100–110. [Google Scholar] [CrossRef]
- Knight, J.; Voth, M. Mapping impervious cover using multi-temporal MODIS NDVI data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 303–309. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 2009, 4, 044003. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Yang, F.; Matsushita, B.; Fukushima, T.; Yang, W. Temporal mixture analysis for estimating impervious surface area from multi-temporal MODIS NDVI data in Japan. ISPRS J. Photogramm. Remote Sens. 2012, 72, 90–98. [Google Scholar] [CrossRef]
- Shao, Z.; Liu, C. The integrated use of DMSP/OLS nighttime light and MODIS data for monitoring large-scale impervious surface dynamics: A case study in the Yangtze River delta. Remote Sens. 2014, 6, 9359–9378. [Google Scholar] [CrossRef]
- Zhang, Q.; Schaaf, C.; Seto, K.C. The vegetation adjusted NTL urban index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sens. Environ. 2013, 129, 32–41. [Google Scholar] [CrossRef]
- Zhuo, L.; Zheng, J.; Zhang, X.; Li, J.; Liu, L. An improved method of night-time light saturation reduction based on EVI. Int. J. Remote Sens. 2015, 36, 4114–4130. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Imura, H.; Higashi, O. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 2205–2209. [Google Scholar] [CrossRef]
- Kuang, W. Evaluating impervious surface growth and its impacts on water environment in Beijing-Tianjin-Tangshan metropolitan area. J. Geogr. Sci. 2012, 22, 535–547. [Google Scholar] [CrossRef]
- Guo, W.; Lu, D.; Wu, Y.; Zhang, J. Mapping impervious surface distribution with integration of SNNP VIIRS DNB and MODIS NDVI data. Remote Sens. 2015, 7, 12459–12477. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Hu, Y. Regional differences of China’s urban expansion from late 20th to early 21st century based on remote sensing information. Chin. Geogr. Sci. 2012, 22, 1–14. [Google Scholar] [CrossRef]
- Schneider, A.; Mertes, C.M.; Tatem, A.J.; Tan, B.; Sulla-Menashe, D.; Graves, S.J.; Patel, N.N.; Horton, J.A.; Gaughan, A.E.; Rollo, J.T.; et al. A new urban landscape in east–southeast Asia, 2000–2010. Environ. Res. Lett. 2015, 10, 034002. [Google Scholar] [CrossRef]
- Sutton, P.C.; Elvidge, C.D.; Baugh, K.; Ziskin, D. Mapping the constructed surface area density for China. Proc. Asia-Pac. Adv. Netw. 2011, 31, 69. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Imhoff, M.L.; Baugh, K.E.; Hobson, V.R.; Nelson, I.; Safran, J.; Dietz, J.B.; Tuttle, B.T. Night-time lights of the world: 1994–1995. ISPRS J. Photogramm. Remote Sens. 2001, 56, 81–99. [Google Scholar] [CrossRef]
- Carroll, M.L.; Townshend, J.R.; DiMiceli, C.M.; Noojipady, P.; Sohlberg, R.A. A new global raster water mask at 250 m resolution. Int. J. Digit. Earth 2009, 2, 291–308. [Google Scholar] [CrossRef]
- Brenning, A. Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection. Remote Sens. Environ. 2009, 113, 239–247. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Næsset, E.; Gobakken, T. Inference for lidar-assisted estimation of forest growing stock volume. Remote Sens. Environ. 2013, 128, 268–275. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Cinzano, P.; Pettit, D.R.; Arvesen, J.; Sutton, P.; Small, C.; Nemani, R.; Longcore, T.; Rich, C.; Safran, J.; et al. The Nightsat mission concept. Int. J. Remote Sens. 2007, 28, 2645–2670. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, B.; Thau, D.; Moore, R. Building a better urban picture: Combining day and night remote sensing imagery. Remote Sens. 2015, 7, 11887–11913. [Google Scholar] [CrossRef]
Cities | Population (Million) | Gross Domestic Product (Billion RMB) | Administrative Area (km2) |
---|---|---|---|
Beijing in North China | 20.69 | 1780 | 16,800 |
Chengdu in Central China | 11.73 | 814 | 12,390 |
Dongguan-Shenzhen in Southeast China | 18.84 | 1796 | 4462 |
Urumqi in Northwest China | 3.35 | 206 | 15,173 |
Wuhan in Central China | 10.12 | 800 | 8494 |
Harbin in Northeast China | 9.95 | 455 | 53,840 |
Kunming in Southwest China | 6.53 | 301 | 21,001 |
Shanghai in East China | 23.80 | 2010 | 6340 |
Lanzhou in Northwest China | 3.61 | 156 | 13,085 |
Zhengzhou in Central China | 8.63 | 555 | 7446 |
Data | Acquisition Date | Description | Source |
---|---|---|---|
DMSP-OLS | 2012 | Version 4 with data range of 6 bits (0–63) and 30 arc-seconds under WGS84 spatial reference system | National Geophysical Data Center (http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html) |
MODIS NDVI (MOD13Q1) | April–October 2012. 247 scenes, including: h23v04–h23v05, h24v04–h24v05, h25v03–h25v06, h26v03–h26v06, h27v04–h27v06, h28v05–h28v07, h29v06 | Gridded level-3 product, a 16-day composite MODIS NDVI product with 250-m spatial resolution and 12-bit data range | NASA Goddard Space Flight Center (http://ladsweb.nascom.nasa.gov/data/search.hOLIl) |
MOD44W | A global water-masked map which was released in 2009 | A global map of surface water at 250-m spatial resolution was produced using the combination of SRTM Water Body Data and MODIS data | Global Land Cover Facility (http://glcf.umd.edu/data/watermask/) |
Landsat 8 OLI imagery | Path/Row: Acquisition date 123/32: 2013-09-01 129/39: 2013-04-20 122/44: 2013-11-29 118/28: 2013-07-12 129/43: 2013-04-20 130/35: 2013-08-01 118/38: 2013-08-29 123/39: 2013-05-12 143/29: 2013-08-28 124/36: 2013-06-04 | The Landsat 8 OLI imagery covers 11 bands: seven reflective bands (e.g., visible, near infrared, and shortwave infrared) with 30-m, one panchromatic band (band 8) with 15-m, and two thermal infrared bands (bands 10 and 11) with 100-m spatial resolution. | United States Geological Survey (http://earthexplorer.usgs.gov/) |
Index | Correlation Coefficient (R) | Root Mean Squared Error (RMSE) | Relative RMSE (RMSEr) |
---|---|---|---|
HSI | 0.83 | 0.154 | 44.3 |
VANUI | 0.85 | 0.149 | 42.9 |
NISI | 0.86 | 0.145 | 41.8 |
ISA Ranges | Samples | HSI | Diff(H-M) | VANUI | Diff(V-M) | NISI | Diff(N-M) |
---|---|---|---|---|---|---|---|
ISA < 0.4 | 0.144 | 0.187 | 0.043 | 0.176 | 0.032 | 0.174 | 0.030 |
ISA in 0.4–0.8 | 0.603 | 0.540 | −0.063 | 0.537 | −0.066 | 0.554 | −0.049 |
ISA > 0.8 | 0.863 | 0.737 | −0.126 | 0.738 | −0.125 | 0.751 | −0.112 |
Overall | 0.348 | 0.343 | −0.005 | 0.337 | −0.011 | 0.341 | −0.007 |
ISA Ranges | HSI | VANUI | NISI | |||
---|---|---|---|---|---|---|
RMSE | RMSEr | RMSE | RMSEr | RMSE | RMSEr | |
<0.2 | 0.136 | 162.8 | 0.122 | 146.5 | 0.117 | 139.6 |
0.2–0.4 | 0.163 | 56.7 | 0.163 | 56.6 | 0.171 | 59.4 |
0.4–0.6 | 0.159 | 32.3 | 0.156 | 31.6 | 0.159 | 32.2 |
0.6–0.8 | 0.182 | 25.8 | 0.186 | 26.4 | 0.170 | 24.1 |
≥0.8 | 0.148 | 17.1 | 0.146 | 16.8 | 0.135 | 15.6 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Lu, D.; Kuang, W. Improving Fractional Impervious Surface Mapping Performance through Combination of DMSP-OLS and MODIS NDVI Data. Remote Sens. 2017, 9, 375. https://doi.org/10.3390/rs9040375
Guo W, Lu D, Kuang W. Improving Fractional Impervious Surface Mapping Performance through Combination of DMSP-OLS and MODIS NDVI Data. Remote Sensing. 2017; 9(4):375. https://doi.org/10.3390/rs9040375
Chicago/Turabian StyleGuo, Wei, Dengsheng Lu, and Wenhui Kuang. 2017. "Improving Fractional Impervious Surface Mapping Performance through Combination of DMSP-OLS and MODIS NDVI Data" Remote Sensing 9, no. 4: 375. https://doi.org/10.3390/rs9040375
APA StyleGuo, W., Lu, D., & Kuang, W. (2017). Improving Fractional Impervious Surface Mapping Performance through Combination of DMSP-OLS and MODIS NDVI Data. Remote Sensing, 9(4), 375. https://doi.org/10.3390/rs9040375