Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System
"> Figure 1
<p>Overview of the two-factorial field trial in corn with 64 plots of a size of 36 × 6 m each. Four sowing densities (8–11 seeds·m<sup>−</sup><sup>2</sup>) were tested at four different levels of nitrogen fertilization (50, 100, 150 and 200 kg·N·ha<sup>−</sup><sup>1</sup>) in a setup with four replicates.</p> "> Figure 2
<p>Visualization of DEM and DTM altitudes relative to a commonly shared GNSS reference ellipsoid (red surface). While the DEM represents a surface model of the experimental site (green surface), the DTM represents the surface of the ground. The DTM was approximated by interpolation of ground classified DEM pixels (yellow surface). Absolute crop heights are derived by subtraction of the two surface representations.</p> "> Figure 3
<p>VI-based Ridler thresholding by the example of a 4 × 4 m sub-sample of plot 413 with a sowing density of 11 seeds·m<sup>−</sup><sup>2</sup> and nitrogen application of 50 kg·N·ha<span class="html-italic"><sub>−</sub></span><sub>1</sub>. The upper left corner shows the RGB orthoimage, which is displayed at a ground resolution of 0.04 m and at crop growth stage Z39. The second image in the upper row shows the ExG layer, which was derived from the RGB orthoimage. Based on the ExG layer’s histogram, five different thresholds were computed. Threshold <span class="html-italic">r</span><sub>3</sub> is the original Ridler threshold, whereas the other thresholds represent four variations on the Ridler method (upper right corner). The remaining images show the ExG layer’s classification (green = crop, yellow = soil) based on the five thresholds. In this example, threshold <span class="html-italic">r</span><sub>3</sub> and <span class="html-italic">r</span><sub>4</sub> seem to classify best. Thresholds <span class="html-italic">r</span><sub>1</sub> and <span class="html-italic">r</span><sub>2 </sub>seem to overestimate crop coverage, while <span class="html-italic">r</span><sub>5</sub> seems to underestimate crop coverage.</p> "> Figure 4
<p>Mean crop height computation using the example of a 4 × 4 m sub-sample of plot 413 with a sowing density of 11 seeds·m<sup>−</sup><sup>2</sup> and nitrogen application of 50 kg·N·ha<sup>−</sup><sup>1</sup>. The lower part of the figure shows a stack of the RGB orthoimage and the ExG layer classification based on threshold <span class="html-italic">r</span><sub>4</sub> at a ground resolution of 0.04 m and at crop growth stage Z39. The upper part shows the corresponding CSM layer height information as a 3D representation, colored by the ExG-classification. Mean crop height was calculated by the crop-classified CSM layer heights only and is displayed as a semi-transparent plane.</p> "> Figure 5
<p>Resulting determination coefficients <span class="html-italic">R</span><sup>2</sup> of modeling strategies <span class="html-italic">S</span><sub>1</sub><sub>3</sub> for all VIs and aerial image ground resolutions at crop growth stages Z39 and Z58. Grey values represent <span class="html-italic">R</span><sub>2</sub> values for strategy <span class="html-italic">S</span><sub>1</sub>, whereas black values represent strategy <span class="html-italic">S</span><sub>2</sub> at Ridler threshold <span class="html-italic">r</span><sub>3</sub> and colored values represent strategy <span class="html-italic">S</span><sub>3</sub> at Ridler threshold <span class="html-italic">r</span><sub>3</sub>, respectively. In addition to the <span class="html-italic">R</span><sup>2</sup> values of strategies <span class="html-italic">S</span><sub>2</sub> and <span class="html-italic">S</span><sub>3</sub> at Ridler threshold <span class="html-italic">r</span><sub>3</sub>, minimum and maximum <span class="html-italic">R</span><sup>2</sup> values of the four remaining threshold variants are indicated as range bars for every aerial image ground resolution individually.</p> "> Figure 6
<p>Spatial illustration of plot-wise distribution of harvested corn grain yield (<b>top</b>), corn grain yield predicted by strategy <span class="html-italic">S</span><sub>3</sub> at crop growth stage Z39, with ExG at Ridler threshold <span class="html-italic">r</span><sub>4</sub> and an aerial image ground resolution of 0.04 m·px<sup>−</sup><sup>1</sup> (<b>middle</b>) and the resulting prediction error of this strategy (<b>bottom</b>). For this strategy, the total root mean squared error of prediction (RMSEP) equals 0.68 t·ha<sup>−</sup><sup>1</sup> (8.8%).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. UAS and Sensor Setup
2.3. Measurements
Date | Growth Stage | Images | Scheduled Altitude (m) | Ground Resolution (m·px−1) | Time | Illumination | Wind (m·s−1) |
---|---|---|---|---|---|---|---|
17/07/2013 | Z32 | 253 | 50 | 0.02 | 11–12 am | clear sky | 1 |
01/08/2013 | Z39 | 198 | 50 | 0.02 | 10–11 am | clear sky | 2 |
15/08/2013 | Z58 | 268 | 50 | 0.02 | 10–11 am | clear sky | 2 |
2.4. Image Processing
2.4.1. Orthoimage and Digital Elevation Model
2.4.2. Crop Surface Model and Vegetation Indices
Index Reference | Explanation | Formula |
---|---|---|
ExG | ||
Woebbecke et al. [33] & Meyer et al. [51] | Excess Green Index | 2 × Rgreen − Rred − Rblue |
VIg | ||
Gitelson et al. [34] | Vegetation Index Green | |
PPRb | ||
based on Metternicht [52] | Plant Pigment Ratio |
2.4.3. Plot-Wise Feature Extraction
2.5. Modeling Strategy
2.6. Statistical Analysis
3. Results and Discussion
3.1. Field Trial
3.2. Image Processing
Geo-Reference | Coordinate Component | Ground Resolution (m·px−1) | ||||
---|---|---|---|---|---|---|
0.02 | 0.04 | 0.06 | 0.08 | 0.10 | ||
GCPs | Horizontal | 0.058 | 0.063 | 0.084 | 0.089 | 0.082 |
Vertical | 0.068 | 0.059 | 0.051 | 0.046 | 0.075 | |
GNSS & IMU | Horizontal | 0.430 | 0.375 | 0.399 | 0.409 | 0.376 |
Vertical | 0.303 | 0.273 | 0.283 | 0.320 | 0.379 |
Value | Coordinate Component | Ground Resolution (m·px−1) | ||||
---|---|---|---|---|---|---|
0.02 | 0.04 | 0.06 | 0.08 | 0.10 | ||
Plot Height | Vertical | 0.024 | 0.010 | 0.009 | 0.010 | 0.008 |
3.3. Modeling Strategy
Ground Res. (m·px−1) | ExG | VIg | PPRb | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | Sx | rx | 0.02 | 0.04 | 0.06 | 0.08 | 0.10 | 0.02 | 0.04 | 0.06 | 0.08 | 0.10 | 0.02 | 0.04 | 0.06 | 0.08 | 0.10 |
Z32 | S1 | 0.48*** | 0.26*** | 0.12** | 0.05 | 0.09* | 0.48*** | 0.26*** | 0.12** | 0.05 | 0.09* | 0.48*** | 0.26*** | 0.12** | 0.05 | 0.09* | |
Z32 | S2 | r1 | 0.54*** | 0.27*** | 0.12** | 0.05 | 0.09* | 0.53*** | 0.25*** | 0.11** | 0.05 | 0.08* | 0.46*** | 0.25*** | 0.11** | 0.05 | 0.09* |
Z32 | S2 | r2 | 0.55*** | 0.24*** | 0.11** | 0.04 | 0.08* | 0.55*** | 0.21*** | 0.09* | 0.03 | 0.07* | 0.47*** | 0.21*** | 0.08 | 0.03 | 0.08* |
Z32 | S2 | r3 | 0.55*** | 0.23*** | 0.08* | 0.03 | 0.08* | 0.46*** | 0.16*** | 0.05 | 0.02 | 0.05 | 0.46*** | 0.18*** | 0.05 | 0.02 | 0.07* |
Z32 | S2 | r4 | 0.53*** | 0.20*** | 0.06* | 0.02 | 0.06* | 0.36*** | 0.11** | 0.02 | 0.01 | 0.04 | 0.42*** | 0.14** | 0.03 | 0.01 | 0.04 |
Z32 | S2 | r5 | 0.51*** | 0.17*** | 0.04 | 0.01 | 0.05 | 0.25*** | 0.09* | 0.01 | 0.01 | 0.05 | 0.37*** | 0.09* | 0.02 | 0.00 | 0.03 |
Z32 | S3 | r1 | 0.54*** | 0.30* | 0.21* | 0.20** | 0.21** | 0.53*** | 0.25* | 0.13 | 0.07 | 0.10 | 0.19* | 0.13* | 0.18* | ||
Z32 | S3 | r2 | 0.55*** | 0.32*** | 0.31*** | 0.33*** | 0.56*** | 0.23** | 0.19*** | 0.21** | 0.27*** | 0.23*** | 0.27*** | ||||
Z32 | S3 | r3 | 0.55*** | 0.35*** | 0.34*** | 0.38*** | 0.32*** | 0.31*** | 0.34*** | 0.33*** | 0.30*** | 0.33*** | |||||
Z32 | S3 | r4 | 0.55*** | 0.33*** | 0.32*** | 0.38*** | 0.31*** | 0.32*** | 0.37*** | 0.32*** | 0.30*** | 0.33*** | |||||
Z32 | S3 | r5 | 0.52*** | 0.29*** | 0.29*** | 0.34*** | 0.28*** | 0.29*** | 0.36*** | 0.30*** | 0.29*** | 0.32*** | |||||
Z39 | S1 | 0.59*** | 0.68*** | 0.68*** | 0.63*** | 0.59*** | 0.59*** | 0.68*** | 0.68*** | 0.63*** | 0.59*** | 0.59*** | 0.68*** | 0.68*** | 0.63*** | 0.59*** | |
Z39 | S2 | r1 | 0.60*** | 0.69*** | 0.68*** | 0.62*** | 0.58*** | 0.59*** | 0.68*** | 0.68*** | 0.62*** | 0.59*** | 0.57*** | 0.69*** | 0.68*** | 0.62*** | 0.58*** |
Z39 | S2 | r2 | 0.62*** | 0.70*** | 0.68*** | 0.62*** | 0.58*** | 0.61*** | 0.70*** | 0.68*** | 0.62*** | 0.58*** | 0.59*** | 0.70*** | 0.68*** | 0.62*** | 0.58*** |
Z39 | S2 | r3 | 0.63*** | 0.71*** | 0.68*** | 0.62*** | 0.58*** | 0.63*** | 0.70*** | 0.68*** | 0.62*** | 0.58*** | 0.60*** | 0.70*** | 0.68*** | 0.62*** | 0.58*** |
Z39 | S2 | r4 | 0.64*** | 0.71*** | 0.68*** | 0.62*** | 0.58*** | 0.63*** | 0.70*** | 0.67*** | 0.61*** | 0.57*** | 0.61*** | 0.70*** | 0.68*** | 0.62*** | 0.58*** |
Z39 | S2 | r5 | 0.64*** | 0.71*** | 0.68*** | 0.62*** | 0.58*** | 0.63*** | 0.70*** | 0.66*** | 0.60*** | 0.56*** | 0.62*** | 0.70*** | 0.68*** | 0.62*** | 0.58*** |
Z39 | S3 | r1 | 0.60*** | 0.69*** | 0.69*** | 0.62*** | 0.58*** | 0.59*** | 0.68*** | 0.68*** | 0.63*** | 0.60*** | 0.59*** | 0.69*** | 0.68*** | 0.63*** | 0.60*** |
Z39 | S3 | r2 | 0.71*** | 0.70*** | 0.64*** | 0.60*** | 0.62*** | 0.70*** | 0.68*** | 0.63*** | 0.59*** | 0.59*** | 0.71*** | 0.69*** | 0.62*** | 0.58*** | |
Z39 | S3 | r3 | 0.72*** | 0.63*** | 0.70*** | 0.68*** | 0.62*** | 0.59*** | 0.60*** | 0.71*** | 0.69*** | 0.63*** | 0.59*** | ||||
Z39 | S3 | r4 | 0.64*** | 0.71*** | 0.68*** | 0.62*** | 0.59*** | 0.61*** | 0.72*** | 0.70*** | 0.63*** | 0.59*** | |||||
Z39 | S3 | r5 | 0.64*** | 0.71*** | 0.68*** | 0.62*** | 0.58*** | 0.62*** | 0.71*** | 0.64*** | 0.60*** | ||||||
Z58 | S1 | 0.62*** | 0.68*** | 0.64*** | 0.64*** | 0.67*** | 0.62*** | 0.68*** | 0.64*** | 0.64*** | 0.67*** | 0.62*** | 0.68*** | 0.64*** | 0.64*** | 0.67*** | |
Z58 | S2 | r1 | 0.59*** | 0.68*** | 0.65*** | 0.64*** | 0.67*** | 0.64*** | 0.68*** | 0.64*** | 0.64*** | 0.68*** | 0.59*** | 0.69*** | 0.65*** | 0.65*** | 0.68*** |
Z58 | S2 | r2 | 0.55*** | 0.69*** | 0.65*** | 0.65*** | 0.67*** | 0.64*** | 0.68*** | 0.64*** | 0.64*** | 0.67*** | 0.56*** | 0.69*** | 0.65*** | 0.65*** | 0.68*** |
Z58 | S2 | r3 | 0.52*** | 0.69*** | 0.65*** | 0.65*** | 0.68*** | 0.64*** | 0.68*** | 0.64*** | 0.64*** | 0.67*** | 0.53*** | 0.69*** | 0.65*** | 0.65*** | 0.68*** |
Z58 | S2 | r4 | 0.49*** | 0.69*** | 0.65*** | 0.65*** | 0.67*** | 0.63*** | 0.68*** | 0.64*** | 0.64*** | 0.67*** | 0.52*** | 0.69*** | 0.65*** | 0.65*** | 0.68*** |
Z58 | S2 | r5 | 0.46*** | 0.69*** | 0.65*** | 0.65*** | 0.66*** | 0.62*** | 0.68*** | 0.63*** | 0.63*** | 0.66*** | 0.52*** | 0.69*** | 0.65*** | 0.65*** | 0.68*** |
Z58 | S3 | r1 | 0.60*** | 0.69*** | 0.65*** | 0.64*** | 0.67*** | 0.64*** | 0.68*** | 0.65*** | 0.64*** | 0.68*** | 0.59*** | 0.69*** | 0.65*** | 0.65*** | 0.69*** |
Z58 | S3 | r2 | 0.55*** | 0.69*** | 0.65*** | 0.65*** | 0.68*** | 0.65*** | 0.68*** | 0.65*** | 0.64*** | 0.67*** | 0.56*** | 0.69*** | 0.65*** | 0.66*** | 0.69*** |
Z58 | S3 | r3 | 0.53*** | 0.69*** | 0.65*** | 0.65*** | 0.68*** | 0.65*** | 0.69*** | 0.65*** | 0.64*** | 0.67*** | 0.53*** | 0.69*** | 0.65*** | 0.65*** | 0.69*** |
Z58 | S3 | r4 | 0.69*** | 0.65*** | 0.66*** | 0.69*** | 0.69*** | 0.66*** | 0.65*** | 0.67*** | 0.52*** | 0.69*** | 0.65*** | 0.65*** | 0.68*** | ||
Z58 | S3 | r5 | 0.69*** | 0.66*** | 0.67*** | 0.68*** | 0.65*** | 0.67*** | 0.52*** | 0.69*** | 0.65*** | 0.65*** | 0.68*** |
Ground Res. (m·px−1) | ExG | VIg | PPRb | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | Sx | rx | 0.02 | 0.04 | 0.06 | 0.08 | 0.10 | 0.02 | 0.04 | 0.06 | 0.08 | 0.10 | 0.02 | 0.04 | 0.06 | 0.08 | 0.10 |
Z32 | S1 | 0.93 | 1.11 | 1.20 | 1.25 | 1.21 | 0.93 | 1.11 | 1.20 | 1.25 | 1.21 | 0.93 | 1.11 | 1.20 | 1.25 | 1.21 | |
Z32 | S2 | r1 | 0.88 | 1.11 | 1.21 | 1.25 | 1.21 | 0.89 | 1.13 | 1.21 | 1.25 | 1.22 | 0.94 | 1.12 | 1.21 | 1.25 | 1.21 |
Z32 | S2 | r2 | 0.86 | 1.13 | 1.21 | 1.25 | 1.22 | 0.87 | 1.15 | 1.22 | 1.26 | 1.23 | 0.93 | 1.14 | 1.22 | 1.25 | 1.22 |
Z32 | S2 | r3 | 0.87 | 1.14 | 1.23 | 1.26 | 1.22 | 0.95 | 1.17 | 1.24 | 1.26 | 1.24 | 0.94 | 1.16 | 1.24 | 1.26 | 1.23 |
Z32 | S2 | r4 | 0.88 | 1.15 | 1.24 | 1.26 | 1.23 | 1.03 | 1.20 | 1.26 | 1.27 | 1.24 | 0.98 | 1.19 | 1.26 | 1.27 | 1.24 |
Z32 | S2 | r5 | 0.90 | 1.17 | 1.25 | 1.27 | 1.24 | 1.11 | 1.22 | 1.27 | 1.27 | 1.24 | 1.02 | 1.21 | 1.27 | 1.28 | 1.26 |
Z32 | S3 | r1 | 0.90 | 1.10 | 1.16 | 1.17 | 1.15 | 0.90 | 1.14 | 1.23 | 1.26 | 1.23 | 0.91 | 1.10 | 1.19 | 1.23 | 1.19 |
Z32 | S3 | r2 | 0.88 | 1.04 | 1.07 | 1.08 | 1.06 | 0.87 | 1.08 | 1.14 | 1.16 | 1.15 | 0.91 | 1.07 | 1.13 | 1.16 | 1.13 |
Z32 | S3 | r3 | 0.88 | 1.02 | 1.05 | 1.05 | 1.02 | 0.90 | 1.03 | 1.07 | 1.08 | 1.05 | 0.91 | 1.04 | 1.08 | 1.10 | 1.07 |
Z32 | S3 | r4 | 0.88 | 1.03 | 1.06 | 1.07 | 1.03 | 0.95 | 1.05 | 1.08 | 1.07 | 1.03 | 0.93 | 1.04 | 1.08 | 1.09 | 1.07 |
Z32 | S3 | r5 | 0.90 | 1.07 | 1.10 | 1.09 | 1.06 | 1.00 | 1.08 | 1.10 | 1.09 | 1.04 | 0.96 | 1.07 | 1.09 | 1.10 | 1.07 |
Z39 | S1 | 0.83 | 0.73 | 0.74 | 0.79 | 0.83 | 0.83 | 0.73 | 0.74 | 0.79 | 0.83 | 0.83 | 0.73 | 0.74 | 0.79 | 0.83 | |
Z39 | S2 | r1 | 0.83 | 0.71 | 0.73 | 0.80 | 0.83 | 0.83 | 0.73 | 0.74 | 0.80 | 0.83 | 0.85 | 0.72 | 0.74 | 0.80 | 0.83 |
Z39 | S2 | r2 | 0.80 | 0.70 | 0.73 | 0.80 | 0.83 | 0.81 | 0.70 | 0.74 | 0.80 | 0.83 | 0.83 | 0.71 | 0.74 | 0.80 | 0.83 |
Z39 | S2 | r3 | 0.79 | 0.70 | 0.73 | 0.80 | 0.83 | 0.79 | 0.70 | 0.74 | 0.80 | 0.84 | 0.81 | 0.70 | 0.74 | 0.80 | 0.83 |
Z39 | S2 | r4 | 0.78 | 0.69 | 0.73 | 0.80 | 0.84 | 0.78 | 0.70 | 0.75 | 0.81 | 0.85 | 0.81 | 0.70 | 0.74 | 0.80 | 0.83 |
Z39 | S2 | r5 | 0.77 | 0.69 | 0.74 | 0.80 | 0.84 | 0.78 | 0.70 | 0.76 | 0.82 | 0.86 | 0.80 | 0.70 | 0.74 | 0.80 | 0.83 |
Z39 | S3 | r1 | 0.84 | 0.72 | 0.74 | 0.81 | 0.85 | 0.84 | 0.73 | 0.74 | 0.80 | 0.83 | 0.84 | 0.73 | 0.75 | 0.80 | 0.83 |
Z39 | S3 | r2 | 0.78 | 0.71 | 0.73 | 0.79 | 0.83 | 0.81 | 0.71 | 0.75 | 0.81 | 0.84 | 0.84 | 0.70 | 0.74 | 0.81 | 0.85 |
Z39 | S3 | r3 | 0.75 | 0.69 | 0.70 | 0.76 | 0.79 | 0.80 | 0.71 | 0.76 | 0.81 | 0.84 | 0.83 | 0.69 | 0.73 | 0.80 | 0.84 |
Z39 | S3 | r4 | 0.73 | 0.68 | 0.68 | 0.73 | 0.76 | 0.79 | 0.70 | 0.75 | 0.81 | 0.84 | 0.81 | 0.69 | 0.73 | 0.80 | 0.83 |
Z39 | S3 | r5 | 0.71 | 0.67 | 0.68 | 0.72 | 0.74 | 0.78 | 0.70 | 0.75 | 0.81 | 0.85 | 0.81 | 0.70 | 0.73 | 0.79 | 0.83 |
Z58 | S1 | 0.82 | 0.72 | 0.77 | 0.77 | 0.74 | 0.82 | 0.72 | 0.77 | 0.77 | 0.74 | 0.82 | 0.72 | 0.77 | 0.77 | 0.74 | |
Z58 | S2 | r1 | 0.85 | 0.72 | 0.76 | 0.76 | 0.73 | 0.79 | 0.72 | 0.77 | 0.77 | 0.73 | 0.85 | 0.71 | 0.76 | 0.76 | 0.73 |
Z58 | S2 | r2 | 0.89 | 0.71 | 0.76 | 0.76 | 0.73 | 0.79 | 0.72 | 0.77 | 0.77 | 0.73 | 0.89 | 0.71 | 0.76 | 0.76 | 0.73 |
Z58 | S2 | r3 | 0.93 | 0.71 | 0.76 | 0.76 | 0.73 | 0.80 | 0.72 | 0.77 | 0.77 | 0.74 | 0.91 | 0.71 | 0.76 | 0.76 | 0.73 |
Z58 | S2 | r4 | 0.96 | 0.71 | 0.76 | 0.76 | 0.73 | 0.80 | 0.72 | 0.78 | 0.77 | 0.74 | 0.93 | 0.71 | 0.76 | 0.76 | 0.73 |
Z58 | S2 | r5 | 0.98 | 0.71 | 0.76 | 0.76 | 0.74 | 0.82 | 0.72 | 0.78 | 0.77 | 0.75 | 0.93 | 0.72 | 0.76 | 0.76 | 0.73 |
Z58 | S3 | r1 | 0.85 | 0.72 | 0.77 | 0.77 | 0.74 | 0.80 | 0.73 | 0.78 | 0.78 | 0.74 | 0.86 | 0.72 | 0.77 | 0.76 | 0.72 |
Z58 | S3 | r2 | 0.90 | 0.72 | 0.77 | 0.77 | 0.74 | 0.80 | 0.73 | 0.78 | 0.78 | 0.74 | 0.90 | 0.72 | 0.77 | 0.76 | 0.72 |
Z58 | S3 | r3 | 0.94 | 0.72 | 0.77 | 0.76 | 0.73 | 0.79 | 0.72 | 0.77 | 0.78 | 0.74 | 0.92 | 0.72 | 0.77 | 0.76 | 0.73 |
Z58 | S3 | r4 | 0.93 | 0.72 | 0.77 | 0.75 | 0.73 | 0.78 | 0.71 | 0.76 | 0.77 | 0.74 | 0.93 | 0.72 | 0.77 | 0.76 | 0.73 |
Z58 | S3 | r5 | 0.92 | 0.72 | 0.76 | 0.75 | 0.73 | 0.78 | 0.71 | 0.76 | 0.76 | 0.74 | 0.93 | 0.72 | 0.77 | 0.77 | 0.73 |
Growth Stage | |||
---|---|---|---|
Z32 | Z39 | Z58 | |
Ground Resolution | highest/high | high/intermediate | high/intermediate/low |
Vegetation Index | ExG | ExG | VIg |
Prediction Strategy | S2 / (S3) | S2 / (S3) | S1 / S2 / (S3) |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stafford, J. Implementing precision agriculture in the 21st century. J. Agr. Eng. Res. 2000, 76, 267–275. [Google Scholar] [CrossRef]
- Delin, S. Site-Specific Nitrogen Fertilization Demand in Relation to Plant Available Soil Nitrogen and Water. PhD Thesis, Swedish University of Agricultural Sciences, Skara, Sweden, 2005. [Google Scholar]
- Flowers, M.; Weisz, R.; White, J. Yield-based management zones and grid sampling strategies: Describing soil test and nutrient variability. Agron. J. 2005, 97, 968–982. [Google Scholar] [CrossRef]
- Link, J.; Graeff, S.; Batchelor, W.D.; Claupein, W. Evaluating the economic and environmental impact of environmental compensation payment policy under uniform and variable-rate nitrogen management. Agric. Syst. 2006, 91, 135–153. [Google Scholar] [CrossRef]
- Bongiovanni, R.G.; Robledo, C.W.; Lambert, D.M. Economics of site-specific nitrogen management for protein content in wheat. Comput. Electron. Agric. 2007, 58, 13–24. [Google Scholar] [CrossRef]
- Mourtzinis, S.; Arriaga, F.J.; Balkcom, K.S.; Ortiz, B.V. Corn grain and stover yield prediction at R1 growth stage. Agron. J. 2013, 105, 1045–1050. [Google Scholar] [CrossRef]
- Lauer, J. Methods for Calculating Corn Yield. http://corn.agronomy.wisc.edu/AA/pdfs/A033.pdf (accessed on 3 July 2014).
- Blackmore, S. The interpretation of trends from multiple yield maps. Comput. Electron. Agric. 2000, 26, 37–51. [Google Scholar] [CrossRef]
- Rodrigues, M.S.; Cora, J.E.; Castrignano, A.; Mueller, T.G.; Rienzi, E. A spatial and temporal prediction model of corn grain yield as a function of soil attributes. Agron. J. 2013, 105, 1878–1887. [Google Scholar] [CrossRef]
- Thorp, K.R.; DeJonge, K.C.; Kaleita, A.L.; Batchelor, W.D.; Paz, J.O. Methodology for the use of DSSAT models for precision agriculture decision support. Comput. Electron. Agric. 2008, 64, 276–285. [Google Scholar] [CrossRef]
- Batchelor, W.D.; Basso, B.; Paz, J.O. Examples of strategies to analyze spatial and temporal yield variability using crop models. Eur. J. Agron. 2002, 18, 141–158. [Google Scholar] [CrossRef]
- Aparicio, N.; Villegas, D.; Casadesus, J.; Araus, J.L.; Royo, C. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron. J. 2000, 92, 83–91. [Google Scholar] [CrossRef]
- Pinter, P.J.; Jackson, R.D.; Idso, S.B.; Reginato, R.J. Multidate spectral reflectance as predictors of yield in water stressed wheat and barley. Int. J. Remote Sens. 1981, 2, 43–48. [Google Scholar] [CrossRef]
- Salazar, L.; Kogan, F.; Roytman, L. Using vegetation health indices and partial least squares method for estimation of corn yield. Int. J. Remote Sens. 2008, 29, 175–189. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Lu, L.; Fang, F. Estimating near future regional corn yields by integrating multi-source observations into a crop growth model. Eur. J. Agron. 2013, 49, 126–140. [Google Scholar] [CrossRef]
- Fang, H.; Liang, S.; Hoogenboom, G.; Teasdale, J.; Cavigelli, M. Corn-yield estimation through assimilation of remotely sensed data into the CSM-CERES-Maize model. Int. J. Remote Sens. 2008, 29, 3011–3032. [Google Scholar] [CrossRef]
- Van der Wal, T.; Abma, B.; Viguria, A.; Previnaire, E.; Zarco-Tejada, P.; Serruys, P.; van Valkengoed, E.; van der Voet, P. Fieldcopter: Unmanned aerial systems for crop monitoring services. In Precision Agriculture ’13; Stafford, J., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 169–175. [Google Scholar]
- Berni, J.; Zarco-Tejada, P.; Suarez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef]
- Hunt, E., Jr.; Dean Hively, W.; Fujikawa, S.; Linden, D.; Daughtry, C.; McCarty, G. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens. 2010, 2, 290–305. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Lyon, J.G.; Huete, A. Advances in hyperspectral remote sensing of vegetation and agricultural croplands. In Hyperspectral Remote Sensing of Vegetation, 1st ed.; Thenkabail, P.S., Lyon, J.G., Huete, A., Eds.; CRC Press Inc.: Boca Raton, FL, USA, 2012; pp. 4–35. [Google Scholar]
- Pena, J.M.; Torres-Sanchez, J.; de Castro, A.I.; Kelly, M.; Lopez-Granados, F. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS One 2013. [Google Scholar] [CrossRef]
- Torres-Sanchez, J.; Lopez-Granados, F.; Castro, A.I.D.; Pena-Barragan, J.M. Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PLoS One 2013. [Google Scholar] [CrossRef]
- Eisenbeiss, H.; Sauerbier, M. Investigation of uav systems and flight modes for photogrammetric applications. Photogramm. Rec. 2011, 26, 400–421. [Google Scholar] [CrossRef]
- Neitzel, F.; Klonowski, J. Mobile 3D mapping with a low-cost UAV system. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 38, 1–6. [Google Scholar]
- Harwin, S.; Lucieer, A. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from Unmanned Aerial Vehicle (UAV) imagery. Remote Sens. 2012, 4, 1573–1599. [Google Scholar] [CrossRef]
- Lucieer, A.; Jong, S.M.D.; Turner, D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Prog. Phys. Geogr. 2014, 38, 97–116. [Google Scholar] [CrossRef]
- Eisenbeiss, H. The autonomous mini helicopter: A powerful platform for mobile mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 977–983. [Google Scholar]
- Bendig, J.; Bolten, A.; Bareth, G. UAV-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability. Photogramm. Fernerkund. Geoinf. 2013, 2013, 551–562. [Google Scholar] [CrossRef]
- Bendig, J.; Willkomm, M.; Tilly, N.; Gnyp, M.L.; Bennertz, S.; Qiang, C.; Miao, Y.; Lenz-Wiedemann, V.I.S.; Bareth, G. Very high resolution crop surface models (CSMs) from UAV-based stereo images for rice growth monitoring in Northeast China. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 45–50. [Google Scholar] [CrossRef]
- Waser, L.; Baltsavias, E.; Ecker, K.; Eisenbeiss, H.; Feldmeyer-Christe, E.; Ginzler, C.; Küchler, M.; Zhang, L. Assessing changes of forest area and shrub encroachment in a mire ecosystem using digital surface models and CIR aerial images. Remote Sens. Environ. 2008, 112, 1956–1968. [Google Scholar] [CrossRef]
- Diaz-Varela, R.; Zarco-Tejada, P.; Angileri, V.; Loudjani, P. Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle. J. Environ. Manag. 2014, 134, 117–126. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.; Diaz-Varela, R.; Angileri, V.; Loudjani, P. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
- Woebbecke, D.; Meyer, G.; von Bargen, K.; Mortensen, D. Color indices for weed identification under various soil, residue and lighting conditions. Ame. Soc. Agric. Eng. 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Gitelson, A.; Kaufman, Y.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Torres-Sanchez, J.; Pena, J.; de Castro, A.; Lopez-Granados, F. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef]
- Katsvairo, T.W.; Cox, W.J.; van Es, H.M. Spatial growth and nitrogen uptake variability of corn at two nitrogen levels. Agron. J. 2003, 95, 1000–1011. [Google Scholar] [CrossRef]
- Yin, X.; Jaja, N.; McClure, M.A.; Hayes, R.M. Comparison of models in assessing relationship of corn yield with plant height measured during early- to mid-season. J. Agric. Sci. 2011, 3, 14–24. [Google Scholar]
- Yin, X.; McClure, M.A.; Jaja, N.; Tyler, D.D.; Hayes, R.M. In-season prediction of corn yield using plant height under major production systems. Agron. J. 2011, 103, 923–929. [Google Scholar] [CrossRef]
- HiSystems GmbH. Available online: http://mikrokopter.de/ucwiki/en/HexaKopter (accessed on 7 March 2014).
- Raspberry Pi Foundation. Available online: http://www.raspberrypi.org/faqs (accessed on 7 March 2014).
- Geipel, J.; Peteinatos, G.G.; Claupein, W.; Gerhards, R. Enhancement of micro Unmanned Aerial Vehicles to agricultural aerial sensor systems. In Precision Agriculture ’13; Stafford, J., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 161–167. [Google Scholar]
- Canon Europe Ltd. Available online: http://www.canon-europe.com/For_Home/Product_Finder/Cameras/Digital_Camera/IXUS/Digital_IXUS_110_IS/ (accessed on 7 March 2014).
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- AgiSoft LLC. Available online: http://agisoft.ru/products/photoscan/professional/ (accessed on 12 March 2014).
- Lowe, D.G. Method and Apparatus for Identifying Scale Invariant Features in an Image and Use of Same for Locating an Object in an Image. Patent US6711293 B1, 23 March 2004. [Google Scholar]
- Snavely, N.; Seith, S.M.; Szeliski, R. Modeling the world from internet photo collections. Int. J. Comput. Vis. 2008, 80, 189–210. [Google Scholar] [CrossRef]
- Sibson, R. A brief description of natural neighbor interpolation. In Interpreting Multivariate Data; Barnett, V., Ed.; John Wiley: Chichester, UK, 1981; pp. 21–36. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Hijmans, R.J.; van Etten, J. Raster: Geographic Analysis and Modeling with Raster Data, R Package Version 2.3–0 ed. 2014. Available online: http://cran.r-project.org/web/packages/raster/ (accessed on 15 April 2014).
- Kort, E. Rtiff: A Tiff Reader for R., R Package Version 1.4.4. ed. 2014. Available online: http://cran.r-project.org/web/packages/rtiff/ (accessed on 15 April 2014).
- Meyer, G.E.; Mehta, T.; Kocher, M.; Mortensen, D.; Samal, A. Textural imaging and discriminant analysis for distinguishing weeds for spot spraying. Trans. ASAE 1998, 41, 1189–1197. [Google Scholar] [CrossRef]
- Metternicht, G. Vegetation indices derived from high-resolution airborne videography for precision crop management. Int. J. Remote Sens. 2003, 24, 2855–2877. [Google Scholar] [CrossRef]
- Ridler, T.; Calvard, S. Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern. 1978, 8, 630–632. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System; Available online:. Available online: http://qgis.osgeo.org (accessed on 15 April 2014).
- Turner, D.; Lucieer, A.; Watson, C. An automated technique for generating georectified mosaics from ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery, based on Structure from Motion (SfM) point clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef]
- Ruiz, J.J.; Diaz-Mas, L.; Perez, F.; Viguria, A. Evaluating the accuracy of DEM generation algorithms from UAV imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2013, 40, 333–337. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Geipel, J.; Link, J.; Claupein, W. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System. Remote Sens. 2014, 6, 10335-10355. https://doi.org/10.3390/rs61110335
Geipel J, Link J, Claupein W. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System. Remote Sensing. 2014; 6(11):10335-10355. https://doi.org/10.3390/rs61110335
Chicago/Turabian StyleGeipel, Jakob, Johanna Link, and Wilhelm Claupein. 2014. "Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System" Remote Sensing 6, no. 11: 10335-10355. https://doi.org/10.3390/rs61110335
APA StyleGeipel, J., Link, J., & Claupein, W. (2014). Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System. Remote Sensing, 6(11), 10335-10355. https://doi.org/10.3390/rs61110335