Semi-Automatic Detection of Swimming Pools from Aerial High-Resolution Images and LIDAR Data
<p>(<b>a</b>) Aerial RGB image; (<b>b</b>) digital surface model (DSM); (<b>c</b>) intensity LIDAR data; (<b>d</b>) near-infrared band from the aerial image; and (<b>e</b>) the ground truth made by the authors to determine the accuracy of each studied method.</p> ">
<p>Flow chart of the proposed method for the detection of swimming pools. NIR, near-infrared; PCA, principal component analysis; DSM, digital surface model; DTM, digital terrain model; NDVI, Normalized Difference Vegetation Index; NDSPI, Normalized Difference Swimming Pool Index; RAG, region adjacency graph; nDSM, normalized digital surface model; LULC, land uses and land covers.</p> ">
<p>(<b>a</b>) Synthetic image formed by nine regions and fifteen edges; and (<b>b</b>) corresponding region adjacency graph (RAG).</p> ">
<p>(<b>a</b>) NDVI index image; (<b>b</b>) LIDAR intensity; (<b>c</b>) nDSM; and (<b>d</b>) the NDSPI index created by the authors.</p> ">
<p>Spectral signatures of a river and two lakes in an aerial RGB-NIR image.</p> ">
<p>Spectral signatures of five swimming pools in an aerial RGB-NIR image.</p> ">
<p>(<b>a</b>) The detail of the studied area in RGB; (<b>b</b>) swimming pools detected in the former detail (it is possible to see two swimming pools correctly detected and two large false positive regions in dark areas); (<b>c</b>) another detailed imaged of the studied area in RGB; and (<b>d</b>) swimming pool detection (there are no pools in this area, but there are some false positives in shadowed regions).</p> ">
<p>Spectral signatures of swimming pools and shadowed areas.</p> ">
<p>(<b>a</b>) Swimming pools detected with false positives in shadowed areas; (<b>b</b>) shadowed regions in the studied area (white color represents shadowed areas, black shows no dark regions); and (<b>c</b>) swimming pools detected after removing false positives in shadowed regions.</p> ">
Abstract
:1. Introduction
2. Materials
3. Method
3.1. Aerial Image Loading, LIDAR Data Rasterization and nDSM Generation
3.2. Segmentation of First Component Image from PCA
3.3. Creation of a Region Adjacency Graph (RAG)
3.4. Decision Indices Computing
3.4.1. NDVI
3.4.2. LIDAR Intensity
3.4.3. nDSM
3.4.4. NDSPI
3.4.5. NDWI
3.5. Dempster–Shafer Theory
3.5.1. Dempster–Shafer Theory in Land Cover Detection
3.5.2. Land Cover Allocation
3.6. Shadow Detection and Correction of Dark Regions Labeled As Water Surfaces
3.7. Reference Data and Evaluation
4. Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Holmes, W.S.; Buffalo, N.Y. Automatic photointerpretation and target location. Proc. IEEE 1966, 54, 1679–1686. [Google Scholar]
- Voirin, Y.; Benie, G.B.; Deng-Chen, H.; Ko, F.; Goita, K. A Forest Map Updating Expert System Based on the Integration of Low Level Image Analysis and Photointerpretation Techniques. Proceedings of 2002 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toronto, ON, Canada, 24–28 June 2002; pp. 1618–1620.
- Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis; Springer Verlag: New York, NY, USA, 2006. [Google Scholar]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Machine Learn 1995, 20, 273–297. [Google Scholar]
- Bischof, H.; Schneider, W.; Pinz, A.J. Multispectral classification of Landsat-images using neural networks. IEEE Trans. Geosci. Remote Sens 1992, 30, 482–490. [Google Scholar]
- Gath, I.; Geva, A.B. Unsupervised optimal fuzzy clustering. IEEE Trans. Pattern Anal. Machine Intell 1989, 11, 773–780. [Google Scholar]
- Duda, T.; Canty, M.; Klaus, D. Unsupervised Land-Use Classification of Multispectral Satellite Images. A Comparison of Conventional and Fuzzy-Logic Based Clustering Algorithms. Proceedings of 1999 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Hamburg, Germany, 28 June–02 July 1999; pp. 1256–1258.
- Adams, J.B.; Sabol, D.E.; Kapos, V.; Almeida Filho, R.; Roberts, D.A.; Smith, M.O.; Gillespie, A.R. Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon. Remote Sens. Environ 1995, 52, 137–154. [Google Scholar]
- Song, J.H.; Han, S.H.; Yu, K.Y.; Kim, Y.I. Assessing the Possibility of Land-Cover Classification Using LIDAR Intensity Data. Proceedings of ISPRS Commission III Symposium, Graz, Austria, 9–13 September 2002.
- Antonarakis, A.S.; Richards, K.S.; Brasington, J. Object-based land cover classification using airborne LiDAR. Remote Sens. Environ 2008, 112, 2988–2998. [Google Scholar]
- Charaniya, A.P.; Manduchi, R.; Lodha, S.K. Supervised Parametric Classification of Aerial LiDAR Data. Proceedings of 2004 Conference on Computer Vision and Pattern Recognition Workshop, Washington, DC, USA, 27 June–2 July 2004.
- Rottensteiner, F.; Briese, C. Automatic Generation of Building Models from LIDAR Data and the Integration of Aerial Images. Proceedings of ISPRS Working Group III/3 Workshop on “3-D Reconstruction from Airborne Laserscanner and InSAR Data”, Dresden, Germany, 8–10 October 2003.
- Fitzsimmons, B.; Buck, H. Automatic swimming pool identification for fire suppresion. Proc. SPIE 2012, 8515. [Google Scholar] [CrossRef]
- Tien, D.; Rudra, T.; Hope, A.B. Swimming Pool Identification from Digital Sensor Imagery Using SVM. Proceedings of 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications, Glenelg, Australia, 3–5 December 2007; pp. 523–527.
- McFeeters, S. Using the Normalized Difference Water Index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sens 2013, 5, 3544–3561. [Google Scholar]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ 1996, 58, 257–266. [Google Scholar]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens 2006, 27, 3025–3033. [Google Scholar]
- Zhang, Z.; Prinet, V.; Ma, S. Water Body Extraction from Multi-Source Satellite Images. Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toulouse, France, 21–25 July 2003; pp. 3970–3972.
- Frazier, P.S.; Page, K.J. Water body detection and delineation with Landsat TM data. Photogramm. Eng. Remote Sens 2000, 66, 1461–1467. [Google Scholar]
- Silveira, M.; Heleno, S. Separation between water and land in SAR images using region-based level sets. IEEE Geosci. Remote Sens. Lett 2009, 6, 471–475. [Google Scholar]
- Henry, J.B.; Chastanet, P.; Fellah, K.; Desnos, Y.L. Envisat multi-polarized ASAR data for flood mapping. Int. J. Remote Sens 2006, 27, 1921–1929. [Google Scholar]
- Liu, H.; Jezek, K.C. A complete high-resolution coastline of antarctica extracted from orthorectified radarsat SAR imagery. Photogramm. Eng. Remote Sens 2004, 70, 605–616. [Google Scholar]
- Niedermeier, A.; Hoja, D.; Lehner, S. Topography and morphodynamics in the German Bight using SAR and optical remote sensing data. Ocean Dyn 2005, 55, 100–109. [Google Scholar]
- Galindo, C.; Moreno, P.; Gonzalez, J.; Arevalo, V. Swimming Pools Localization in Colour High-Resolution Satellite Images. Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa, 12–17 July 2009; pp. IV-510–IV-513.
- Myint, S.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ 2011, 115, 1145–1161. [Google Scholar]
- Raber, G.T.; Jensen, J.R.; Schill, S.R.; Schuckman, K. Creation of digital terrain models using an adaptive lidar vegetation point removal process. Photogramm. Eng. Remote Sens 2002, 68, 1307–1315. [Google Scholar]
- Streutker, D.R.; Glenn, N.F. LiDAR measurement of sagebrush steppe vegetation heights. Remote Sens. Environ 2006, 102, 135–145. [Google Scholar]
- De Agirre, A.M.; Malpica, J.A. Constructing a Digital Terrain Model from LiDAR Data. In Advances in Geoinformation Technologies; Horak, J., Halounova, L., Hlasny, T., Kusendova, D., Vozenilek, V., Eds.; Institute of Geoinformatics: Ostrava, Czech Republic, 2010; pp. 47–59. [Google Scholar]
- Wu, Z.; Leahy, R. An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Trans. Pattern Anal. Machine Intell 1993, 15, 1101–1113. [Google Scholar]
- Haralick, R.M.; Shapiro, L.G. Image segmentation techniques. Comput. Vis. Graph. Image Process 1985, 29, 100–132. [Google Scholar]
- Bins, L.S.; Fonseca, L.M.G.; Erthal, G.J.; Li, F.M. Satellite Imagery Segmentation: A Region Growing Approach. Proceedings of VIII Brazilian Symposium on Remote Sensing, Salvador, Brazil, 14–19 April 1996; pp. 677–680.
- Yu Jin, Z. A Review of Recent Evaluation Methods for Image Segmentation. Proceedings of Sixth International Symposium on Signal Processing and its Applications, Kuala Lumpur, Malaysia, 13–16 August 2001; pp. 148–151.
- Rodriguez-Cuenca, B.; Malpica, J.A.; Alonso, M.C. Region-Growing Segmentation of Multispectral High-Resolution Space Images with Open Software. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 4311–4314.
- Mehnert, A.; Jackway, P. An improved seeded region growing algorithm. Pattern Recognit. Lett 1997, 18, 1065–1071. [Google Scholar]
- Fan, J.; Zeng, G.; Body, M.; Hacid, M.-S. Seeded region growing: An extensive and comparative study. Pattern Recognit. Lett 2005, 26, 1139–1156. [Google Scholar]
- Sulaiman, S.N.; Isa, N.A.M. Adaptive fuzzy-K-means clustering algorithm for image segmentation. IEEE Trans. Consum. Electron 2010, 56, 2661–2668. [Google Scholar]
- Gutman, G. Monitoring Global Vegetation Using AVHRR. Proceedings of 1998 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Seattle, WA, USA, 6–10 July 1998; pp. 2509–2511.
- Schneider, S.R.; McGinnis, D.F. The NOAA AVHRR: A New Sensor for Monitoring Crop Growth. Proceedings of the 8th International Machine Processing of Remotely Sensed Data Symposium, West Lafayette, IN, USA, 27–29 June 1982; pp. 281–290.
- Malingreau, J.P.; Tucker, C.J. The Contribution of AVHRR Data for Measuring and Understanding Global Processes: Large Scale Deforstation in the Amazon Basin. Proceedings of 1987 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), New York, NY, USA, 18–21 May 1987; pp. 484–489.
- Clode, S.; Kootsookos, P.J.; Rottensteiner, F. The automatic extraction of roads from LIDAR data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2004, XXXVIII, 231–236. [Google Scholar]
- Qiao, C.; Luo, J.; Sheng, Y.; Shen, Z.; Zhu, Z.; Ming, D. An adaptive water extraction method from remote sensing image based on NDWI. Indian Soc Remote Sens 2012, 40, 421–433. [Google Scholar]
- Dempster, A.P. A generalization of Bayesian Inference. J. Royal Stat. Soc. Series B Methodol 1968, 30, 205–247. [Google Scholar]
- Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976. [Google Scholar]
- Zarco, I.A.; Rodríguez, C.A.; Sendra, J.B.; Malpica, J.A.; Martín-Loeches, M.; Asensio, E.P.; Vela, J.T. Un procedimiento para elaborar mapas de riesgos naturales aplicado a Honduras. In Anales de Geografía; Universidad Complutense: Madrid, Spain, 2003; pp. 55–73. [Google Scholar]
- Yen, J. Generalizing the Dempster-Schafer theory to fuzzy sets. IEEE Trans. Syst. Man Cybern 1990, 20, 559–570. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar]
- Malpica, J.A.; Alonso, M.C.; Sanz, M.A. Dempster–Shafer theory in geographic information systems: A survey. Expert Syst. Appl 2007, 32, 47–55. [Google Scholar]
- De Agirre, A.M.; Malpica, J.A. Detecting Shadows in a Segmented Land Use Land Cover Image with LIDAR Data. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 5458–5461.
- Jensen, J.R. Introductory Digital Image Processing; Prentice-Hall: New York, NY, USA, 1996. [Google Scholar]
- Gigandet, X.; Cuadra, M.B.; Pointet, A.; Cammoun, L.; Caloz, R.; Thiran, J.P. Region-Based Satellite Image Classification: Method and Validation. Proceedings of 2005 IEEE International Conference on Image Processing (ICIP), Genoa, Italy, 11–14 September 2005. [CrossRef]
- Congalton, R.G. Accuracy assessment and validation of remotely sensed and other spatial information. Int. J. Wildland Fire 2001, 10, 321–328. [Google Scholar]
MAHALANOBIS | SVM | NDWI | NDSPI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SP | BG | Σ | SP | BG | Σ | SP | BG | Σ | SP | BG | Σ | |
SP | 962 | 4387 | 5349 | 739 | 68 | 807 | 270 | 1468 | 1738 | 762 | 119 | 881 |
BG | 89 | 294,387 | 294,476 | 312 | 298,706 | 299,018 | 781 | 297,306 | 298,087 | 289 | 298,655 | 298,944 |
Σ | 1051 | 298,774 | 299,825 | 1051 | 298,774 | 299,825 | 1051 | 298,774 | 299,825 | 1051 | 298,774 | 299,825 |
(295,349/299,825) 98.51% | (299,445/299,825) 99.87% | (27,576/299,825) 99.25% | (299,417/299,825) 99.86% |
Kappa coefficient = 0.2965 | Kappa coefficient = 0.7949 | Kappa coefficient = 0.1901 | Kappa coefficient = 0.7881 | |||||
Commission | Omission | Commission | Omission | Commission | Omission | Commission | Omission | |
SP | 82.02% | 8.47% | 8.43% | 29.69% | 84.46% | 74.31% | 13.51% | 27.50% |
BG | 0.03% | 1.47% | 0.10% | 0.02% | 0.26% | 0.49% | 0.10% | 0.04% |
Prod. Acc. | User Acc. | Prod. Acc. | User Acc. | Prod. Acc. | User Acc. | Prod. Acc. | User Acc. | |
SP | 91.53% | 17.98% | 70.31% | 91.57% | 25.69% | 15.54% | 72.50% | 86.49% |
BG | 98.53% | 99.97% | 99.98% | 99.90% | 99.51% | 99.74% | 99.96% | 99.90% |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rodríguez-Cuenca, B.; Alonso, M.C. Semi-Automatic Detection of Swimming Pools from Aerial High-Resolution Images and LIDAR Data. Remote Sens. 2014, 6, 2628-2646. https://doi.org/10.3390/rs6042628
Rodríguez-Cuenca B, Alonso MC. Semi-Automatic Detection of Swimming Pools from Aerial High-Resolution Images and LIDAR Data. Remote Sensing. 2014; 6(4):2628-2646. https://doi.org/10.3390/rs6042628
Chicago/Turabian StyleRodríguez-Cuenca, Borja, and Maria C. Alonso. 2014. "Semi-Automatic Detection of Swimming Pools from Aerial High-Resolution Images and LIDAR Data" Remote Sensing 6, no. 4: 2628-2646. https://doi.org/10.3390/rs6042628
APA StyleRodríguez-Cuenca, B., & Alonso, M. C. (2014). Semi-Automatic Detection of Swimming Pools from Aerial High-Resolution Images and LIDAR Data. Remote Sensing, 6(4), 2628-2646. https://doi.org/10.3390/rs6042628