Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome
<p>PERs results for chemical detection of fertilizer, fertilizer-based bombs, and decomposition products of animal carcasses compared to anise, a floral scent.</p> "> Figure 2
<p>Solar-powered, micro-processor-controlled bee-conditioner system with scent and reward (proprietary syrup solution) dispensing systems. Reward intervals can be controlled automatically by the device, re-programmed as needed, or remotely controlled by wireless communications.</p> "> Figure 3
<p>Wood’s Apidictor for honey bee colony swarm detection.</p> "> Figure 4
<p>Harmonic radar marking and tracking chip. Note the tall, vertical antennae.</p> "> Figure 5
<p>Current size of miniature RFID tags used by investigators [<a href="#B69-biosensors-05-00678" class="html-bibr">69</a>].</p> "> Figure 6
<p>(<b>a</b>) Commercial prototype of bee-mapping LIDAR; (<b>b</b>) Instrument display screen. The computer screen display provides real-time detection of individual bees (<span class="html-italic">i.e.</span>, dots shown in the sweep). Charts at the bottom characterize signal duration, shape, and frequency for each detected insect. Banner at the top gives instrument settings and controls. Most recent bee detection appears on screen in red; (<b>c</b>) Three-dimensional density map of actual bee locations across a field from one of our trials using bees conditioned to find a unique scent. The larger and taller the vertical “cone”, the more bees at that spot, and concurrently, the higher the vapor concentration of the subject chemical.</p> "> Figure 7
<p>Screen captures of bee foraging data from bi-directional bee counters, 1995. The scrollable table and chart show a single colony’s daily forager activity (bee egress in red, bee ingress out blue) over 24 h. The data table can be accessed by tapping the activity plot at any point. A toggle brings up daily summaries for each colony by week.</p> "> Figure 8
<p>Arnia’s Remote Hive Monitoring web-based reporting system [<a href="#B89-biosensors-05-00678" class="html-bibr">89</a>]. The interface is intuitive and works well for beekeepers.</p> "> Figure 9
<p>(<b>a</b>) Instrument specifications for hand-held acoustic scanner (HAS) for detection of bee pests, diseases, and exposures to harmful chemicals; Bee Alert Technology, Inc., (Missoula, Montana, USA); (<b>b</b>) HAS acoustic scanner. A probe microphone is slid into the colony entrance and a 60 s recording taken. The device reads out the detections and probability of detection (e.g., queenless, 95% probability; varroa mites, 28% probability; Africanized bees, 97%, and so forth).</p> "> Figure 10
<p>(<b>a</b>) Principal Component Analysis (PCA) of honey bee sonograms in response to exposure to a variety of chemicals, published in the patent disclosure [<a href="#B94-biosensors-05-00678" class="html-bibr">94</a>]; (<b>b</b>) PCA of honey bee sonograms relative to infestation rates of varroa mites [<a href="#B95-biosensors-05-00678" class="html-bibr">95</a>].</p> "> Figure 11
<p>Arnia’s Remote Hive Monitoring. <span class="html-italic">Normal sonogram</span> (L.), swarming warble (R) [<a href="#B95-biosensors-05-00678" class="html-bibr">95</a>].</p> "> Figure 12
<p>(<b>a</b>) Extreme high resolution (307,200 radiometric pixels) image of two bee colonies with feeder on nearest hive; (<b>b</b>) Picture in picture, high resolution, (76,800 radiometric pixels); MSX technology fuses infrared and visible light images; (<b>c</b>) Moderate resolution (19,200 radiometric pixels); thermal image only of pallets of bee hives stacked in a wintering shed; (<b>d</b>) Moderate resolution (19,200 radiometric pixels) image of two queen cells removed from an incubator and left at room temperature for five minutes. Cell on left has stillborn queen; cell on right has live queen.</p> "> Figure 13
<p>Honey bee use of plots of varying plant diversity as mapped by use of bee-mapping LIDAR.</p> "> Figure 14
<p>Receive Operating Characteristic curve (ROC) for bee detection of 2,4-DNT in soil, derived from DARPA funded trials, based on a figure we provided to a Rand report on Alternatives to Landmine Detection, 2003 [<a href="#B12-biosensors-05-00678" class="html-bibr">12</a>].</p> ">
Abstract
:1. Introduction
Scent-Directed Search is Under Valued by Focus on Dance Language
2. Bees as Chemical Biosensors in the Laboratory and in the Field
2.1. Chemical Signals and Proboscis Extension Reflex
2.2. Constrained Bees as Chemical Biosensors
2.3. Whole Colonies Used in Environmental Monitoring Studies
3. Technological Advancements in Bee-Based Biosensors/Biomonitors
3.1. Bee and Hive Monitoring
3.2. Detecting and Tracking Bees Marked with Tags
3.3. Light Detection and Ranging (LIDAR) Tracking and Mapping of Honey Bees
3.4. Electronic Hives, Bee Counters, Chemical Monitoring at the Hive
3.5. Scale Hives and Smart Hives for Bee Management and Monitoring
3.6. Acoustic Detection of Colony Pests, Diseases, and Chemicals
3.7. InfraRed Imaging
4. Agricultural and Research Applications
4.1. Improving Apiary Management
4.2. Pollinator Research
4.3. Passive and Active Detection of Exotic Species and Diseased Plants
5. Resolving Questions about Dance Language and Scent Detection
6. Summary and Conclusions
Research Initiatives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lennox, J. Aristotle’s Biology (The Stanford Encyclopedia of Philosophy). Available online: http://plato.stanford.edu/archives/spr2014/entries/aristotle-biology/ (accessed on 3 May 2015).
- Butler, C. The Feminine Monarchie; Da Capo Press: New York, NY, USA, 1969. [Google Scholar]
- Lineburg, B. Communication by scent in the honeybee: A theory. Am. Nat. 1924, 58, 530–537. [Google Scholar]
- Von Frisch, K. Bees: Their Vision, Chemical Senses, and Language; Cornell University Press: Ithaca, NY, USA, 1971. [Google Scholar]
- Von Frisch, K. The Dance Language and Orientation of Bees; Harvard University Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Von Frisch, K. Decoding the language of the bee. Science 1974, 185, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Von Frisch, K. Dialects in the language of the bees. Sci. Am. 1962, 207, 78–89. [Google Scholar] [CrossRef]
- Wenner, A.M. Anatomy of a Controversy: The Question of a “Language” among Bees; Columbia University Press: New York, NY, USA, 1990. [Google Scholar]
- Wenner, A.M.; Wells, P.H.; Johnson, D.L. Honey bee recruitment to food sources: Olfaction or Language? Science 1969, 164, 84–86. [Google Scholar] [CrossRef] [PubMed]
- Wells, P.H.; Wenner, A.M. Do honey bees have a language? Nature 1973, 241, 171–175. [Google Scholar] [CrossRef]
- BEESOURCE. Available online: http://www.beesource.com/point-of-view/adrian-wenner/ (accessed on 8 March 2015).
- MacDonald, J. Alternatives for Landmine Detection; RAND: Santa Monica, CA, USA, 2003. [Google Scholar]
- Johnson, D.L.; Wenner, A.M. A relationship between conditioning and communication in honey bees. Anim. Behav. 1966, 14, 261–265. [Google Scholar] [CrossRef]
- Rodacy, P.J.; Bender, S.; Bromenshenk, J.; Henderson, C.; Bender, G. Training and deployment of honeybees to detect explosives and other agents of harm. In Detection and Remediation Technologies for Mines and Minelike Targets VII; Broach, J.T., Harmon, R.S., Dobeck, G.J., Eds.; SPIE: Bellingham, WA, USA, 2002; pp. 474–481. [Google Scholar]
- Can Honey Bees Assist in Area Reduction and Landmine Detection? Available online: http://www.jmu.edu/cisr/journal/7.3/focus/bromenshenk/bromenshenk.htm (accessed on 1 March 2015).
- Bromenshenk, J.; Seccomb, R.A.; Rice, S.D.; Etter, R.T.; Henderson, C.B. Method and Apparatus for Conditioning Honey Bees. U.S. Patent 6,896,579, 24 May 2005. [Google Scholar]
- Ribands, C.R. The Behaviour and Social Life of Honeybees; Dover Publications: New York, NY, USA, 1953. [Google Scholar]
- Ribbands, C.R. The scent perception of the honeybee. Proc. R. Soc. B Biol. Sci. 1955, 143, 367–379. [Google Scholar] [CrossRef]
- Gubin, A.F.; Romashov, G.I. Utilization of the responses of the bee for pollination of plants. Chapter 8. Moscow, Russia, 1933. [Google Scholar]
- Gubin, A.F. Pchelovodstvo 1939, 6, 31, cited v. Frisch, 1943.
- Gubin, A.F. Pchelovodstvo 1938, 5, 40–44, cited v. Frisch, 1943.
- Gubin, A.F. Pchelovodstvo 1936, 6. cited v. Frisch, 1943.
- Gubin, A.F. Cross pollination of fibre flax. Bee World 1945, 26, 30–31. [Google Scholar] [CrossRef]
- Gubin, A.F. Bee training for pollination of cucumbers. Bee World 1945, 26, 34–35. [Google Scholar] [CrossRef]
- Kapustin. Pchelovodstvo 1938, (8,9), 37–38, cited v. Frisch, 1943.
- Dunn, L.C. A firsthand account of the Lysenko quackery. J. Hered. 1969, 60, 110–112. [Google Scholar]
- Lamarckism, the First Theory of Evolution, by Marc Srour. Available online: http://bioteaching.com/lamarckism-the-firs (accessed on 1 March 2015).
- Von Frisch, K. Ueber den geruchsinn der bienen und seine blutenbiologische bedeutung. Zool. Fb. Abt. 1919, 37, 1–238. (In German) [Google Scholar]
- Donhoff, E. Ueber das Geruchsorgan der Biene. In Beitrage zur Bienenkunde; Pfenningstorff: Berlin, Germany, 1855. [Google Scholar]
- Marshall, J. On the sensitivity of the chemoreceptors of the antenna and fore-tarsus of the honeybee. J. Exp. Biol. 1935, 12, 17–26. [Google Scholar]
- SENSOR100 Profile: Inscentinel, Ltd. Available online: http://www.sensor100.com/Dir_Profiles/inscentinel.htm (accessed on 1 March 2015).
- Matsumoto, Y.; Menzel, R.; Sandoz, J.-C.; Giurfa, M. Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: A step toward standardized procedures. J. Neurosci. Methods 2012, 211, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, R.; Abramson, C.I.; Brodschneider, R.; Crailsheim, K.; Farina, W.M.; Fuchs, S.; Grünewald, B.; Hahshold, S.; Karrer, M.; Koeniger, G.; et al. Standard methods for behavioural studies of Apis mellifera. J. Apic. Res. 2013, 52, 1–58. [Google Scholar] [CrossRef]
- Pham-Delegue, M.-H.; Decourtye, A.; Kaiser, L.; Devillers, J. Behavioural methods to assess the effects of pesticides on honey bees. Apidologie 2002, 33, 425–432. [Google Scholar] [CrossRef]
- Decourtye, A.; Devillers, J.; Cluzeau, S.; Charreton, M.; Pham-Delègue, M.-H. Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol. Environ. Saf. 2004, 57, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Bromenshenk, J.J.; Carlson, S.R.; Simpson, J.C.; Thomas, J.M. Pollution monitoring of Puget Sound with honey bees. Science 1985, 227, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Devillers, J.; Pham-Delègue, M.-H. Honey Bees Estimating the Environmental Impact of Chemicals; Taylor & Francis: London, UK; New York, NY, USA, 2002. [Google Scholar]
- New York Times. At German Airports, Bees Help Monitor Air Quality. Available online: http://www.nytimes.com/2010/06/29/ (accessed on 1 March 2015).
- Sadeghi, A.; Mozafari, A.-A.; Bahmani, R.; Shokri, K. Use of honeybees as bio-indicators of environmental pollution in the Kurdistan province of Iran. J. Apic. Sci. 2012, 56, 83–88. [Google Scholar] [CrossRef]
- Stone, P. Creatures Feature Possible Defense Applications. Available online: http://archive.defense.gov/news/newsarticle.aspx?id=43039 (accessed on 1 March 2015).
- Woods, E.F. Means for Detecting and Indicating the Activities of Bees and Conditions in Beehives. U.S. Patent 2,806,082, 9 October 1957. [Google Scholar]
- Bencsik, M.; Bencsik, J.; Baxter, M.; Lucian, A.; Romieu, J.; Millet, M. Identification of the honey bee swarming process by analysing the time course of hive vibrations. Comput. Electron. Agric. 2011, 76, 44–50. [Google Scholar] [CrossRef]
- New York Times. Chip to Track “Killer” Bees Is Invented. Available online: http://www.nytimes.com/1988/10/25/science/chip-to-track-killer-bees-is-invented.html (accessed on 1 March 2015).
- Oak Ridge National Laboratory Review. Available online: http://web.ornl.gov/info/ornlreview/rev25-34/net925.html (accessed on 1 March 2015).
- Kerr, H.T.; Buchanan, M.E.; Valentine, K.H. Method and Device for Identifying Different Species of Honeybees. U.S. Patent 4,876,721, 24 October 1989. [Google Scholar]
- Struye, M.H.; Mortier, H.J.; Arnold, G.; Miniggio, C.; Borneck, R. Microprocessor-controlled monitoring of honeybee flight activity at the hive entrance. Apidologie 1994, 25, 384–395. [Google Scholar] [CrossRef]
- Honey Bee Colony Monitoring Resources from Around the Web, Frank Linton. Available online: http://colonymonitoring.com/ (accessed on 1 March 2015).
- Bromenshenk, J.J.; Smith, G.C.; King, B.E.; Seccomb, R.A.; Alnasser, A.; Henderson, C.B.; Loeser, M.R.; Wrobel, C.L. New and improved methods for monitoring air quality and the terrestrial environment. In Technical Report ADA 326262; National Technical Information Service: Springfield, VA, USA, 1996. [Google Scholar]
- Bromenshenk, J.J.; Seccomb, R.A.; Rice, S.D.; Etter, R.T. Honey Bee Monitoring System for Monitoring Bee Colonies in a Hive. U.S. Patent 6,910,941, 28 June 2004. [Google Scholar]
- Loper, G.M.; Wolf, W.W.; Taylor, O.R., Jr. Detection and monitoring of honeybee drone congregation areas by radar. Apidologie 1987, 18, 163–172. [Google Scholar] [CrossRef]
- Loper, G.M.; Wolf, W.; Taylor, O.R. Honey bee drone flyways and congregation areas: Radar observations. J. Kansas Entomol. Soc. 1992, 65, 223–230. [Google Scholar]
- Carreck, N.L.; Osborne, J.L.; Capaldi, E.A.; Riley, J.R. Tracking bees with radar. Bee World 1999, 80, 124–131. [Google Scholar] [CrossRef]
- Riley, J.R.; Smith, A.D.; Reynolds, D.R.; Edwards, A.; Osborne, J.L.; Williams, I.H.; Carreck, N.L.; Poppy, G.M. Tracking low flying bees with an harmonic radar. Nature 1999, 379, 29–30. [Google Scholar] [CrossRef]
- Riley, J.R.; Reynolds, D.R.; Smith, A.D.; Edwards, A.S.; Osborne, J.L.; Williams, I.H.; McCartney, H.A. Compensation for wind drift by bumblebees. Nature 1999, 400. [Google Scholar] [CrossRef]
- Capaldi, E.A.; Smith, A.D.; Osborne, J.L.; Fahrbach, S.E.; Farris, S.M.; Reynolds, D.R.; Edwards, A.S.; Martin, A.; Robinson, G.E.; Poppy, G.M.; et al. Ontogeny of orientation flights in the honey bee revealed by harmonic radar. Nature 2000, 403, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Riley, J.R.; Greggers, U.; Smith, A.D.; Reynolds, D.R.; Menzel, R. The flight paths of honeybees recruited by the waggle dance. Nature 2005, 435, 205–207. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, D.R.; Riley, J.R. Remote-sensing, telemetric and computer-based technologies for investigating insect movement: A Survey of existing and potential techniques. Comput. Electron. Agric. 2002, 35, 271–307. [Google Scholar] [CrossRef]
- Wolf, S.; McMahon, D.P.; Lim, K.S.; Pull, C.D.; Clark, S.J.; Paxton, R.J.; Osborne, J.L. So near and yet so far: Harmonic Radar reveals reduced homing ability of nosema infected honeybees. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worker Bees as Tracking Devices, Ron Gilbert. Available online: http://www.mindfully.org/Technology/Bee-Tracking-Device (accessed on 1 March 2015).
- Devillers, J. In Silico Bees; Devillers, J., Ed.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2014. [Google Scholar]
- Van Praagh, J.P.; Touw, E. Scanning and Analyzing Individual Bee (Apis mellifera L.) Behavior Using RFID. Available online: http://pub.jki.bund.de/index.php/JKA/article/viewFile/1952/2328 (accessed on 5 February 2015).
- Streit, S.; Bock, F.; Pirk, C.W.W.; Tautz, J. Automatic life-long monitoring of individual insect behaviour now possible. Zoology 2003, 106, 169–171. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.W.; Tautz, J.; Grünewald, B.; Fuchs, S. RFID Tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.; Beguin, M.; Requier, F.; Rollin, O.; Odoux, J.-F.; Aupinel, P.; Aptel, J.; Tchamitchian, S.; Decourtye, A. A common pesticide decreases foraging success and survival in honey bees. Science 2012, 336, 348–350. [Google Scholar] [CrossRef] [PubMed]
- Devillers, J.; Doré, J.; Tisseur, M.; Cluzeau, S.; Maurin, G. Modelling the flight activity of Apis mellifera at the hive entrance. Comput. Electron. Agric. 2004, 42, 87–109. [Google Scholar] [CrossRef]
- Decourtye, A.; Devillers, J.; Aupinel, P.; Brun, F.; Bagnis, C.; Fourrier, J.; Gauthier, M. Honeybee tracking with microchips: A new methodology to measure the effects of pesticides. Ecotoxicology 2011, 20, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Heidinger, I.; Meixner, M.; Berg, S.; Büchler, R. Observation of the mating behavior of honey bee (Apis mellifera L.) queens using radio-frequencyidentification (RFID): Factors influencing the duration and frequency of nuptial flights. Insects 2014, 5, 513–527. [Google Scholar] [CrossRef] [PubMed]
- CSIRO, Bee Sensors Take Flight to Help Farmers. Available online: http://www.csiro.au/Portals/Media/Bee-sensors-take-flight-to-help-farmers (accessed on 1 March 2015).
- Tenczar, P.; Lutz, C.C.; Bikyath, D. Rao; Goldenfeld, N.; Robinson, G.E. Automated monitoring reveals extreme interindividual variation and plasticity in honeybee foraging activity levels. Anim. Behav. 2014, 95, 41–48. [Google Scholar] [CrossRef]
- Carlsten, E.S.; Wicks, G.R.; Repasky, K.S.; Carlsten, J.L.; Bromenshenk, J.J.; Henderson, C.B. Field demonstration of a scanning lidar and detection algorithm for spatially mapping honeybees for biological detection of land mines. Appl. Opt. 2011, 50, 2112–2123. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.A.; Seldomridge, N.L.; Dunkle, D.L.; Nugent, P.W.; Spangler, L.H.; Bromenshenk, J.J.; Henderson, C.B.; Churnside, J.H.; Wilson, J.J. Polarization lidar measurements of honey bees in flight for locating land mines. Opt. Express 2005, 13. [Google Scholar] [CrossRef]
- Repasky, K.S.; Shaw, J.A.; Scheppele, R.; Melton, C.; Carsten, J.L.; Spangler, L.H. Optical detection of honeybees by use of wing-beat modulation of scattered laser light for locating explosives and land mines. Appl. Opt. 2006, 45, 1839–1843. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.S.; Nehrir, A.R.; Repasky, K.S.; Shaw, J.A.; Carlsten, J.L. Range-resolved optical detection of honeybees by use of wing-beat modulation of scattered light for locating land mines. Appl. Opt. 2007, 46, 3007–3012. [Google Scholar] [CrossRef] [PubMed]
- GOLDENSOFTWARE, Surfer 12. Available online: http://www.goldensoftware.com/ (accessed on 8 March 2015).
- Bromenshenk, J.J. Yet another job for busy bees. Sciences 1978, 18, 12–15. [Google Scholar] [CrossRef]
- Barišić, D.; Vertačnik, A.; Bromenshenk, J.J.; Kezić, N.; Lulić, S.; Hus, M.; Kraljević, P.; Šimpraga, Šm.; Seletković, Z. Radionuclides and selected elements in soil and honey from Gorski Kotar, Croatia. Apidologie 1999, 30, 277–287. [Google Scholar] [CrossRef]
- Bromenshenk, J.J.; Preston, E.M. Public participation in environmental monitoring: A means of attaining network capability. Environ. Monit. Assess. 1986, 6, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Bromenshenk, J.J.; Gudatis, J.L.; Carlson, S.R.; Thomas, J.M.; Simmons, M.A. Population dynamics of honey bee nucleus colonies exposed to industrial pollutants. Apidologie 1991, 22, 359–369. [Google Scholar] [CrossRef]
- Wise, S.A.; Koster, B.J.; Parris, R.M.; Schantz, M.M.; Stone, S.F.; Zeisler, R. Experiences in environmental specimen banking. Int. J. Environ. Anal. Chem. 1989, 37, 91–106. [Google Scholar] [CrossRef]
- Smith, O.H.; Petersen, G.W.; Needelman, B.A. Environmental Indicators of Agroecosystems. Adv. Agron. 1999, 69, 75–97. [Google Scholar]
- Spangler, H.G. Photoelectrical counting of outgoing and incoming honey bees. J. Econ. Entomol. 1969, 62, 1183–1184. [Google Scholar] [CrossRef]
- Bromenshenk, J.J.; Henderson, C.B.; Seccomb, R.A. Technical and Final Reports to DARPA, Army Night Vision and Electronic Sensors Directorate, and DoD contractors. Restricted Access: Requires US DoD approval for dissemination, send requests to Corresponding Author (Bromenshenk, J.J.) for information.
- Prier, K.R.S.; Lighthart, B.; Bromenshenk, J.J. Adsorption model of aerosolized bacterial spores (Bacillus subtilis; variety niger) onto free-flying honey bees (Hymenoptera: Apidae) and its validation. Environ. Entomol. 2001, 30, 1188–1194. [Google Scholar] [CrossRef]
- Lighthart, B.; Prier, K.R.S.; Bromenshenk, J.J. Flying honey bees adsorb airborne viruses. Aerobiologia 2005, 21, 147–149. [Google Scholar] [CrossRef]
- Campbell, J.M.; Dahn, D.C.; Ryan, D.A.J. Capacitance-based sensor for monitoring bees passing through a tunnel. Meas. Sci. Technol. 2005, 16. [Google Scholar] [CrossRef]
- Meshi, A.; Bloch, G. Monitoring circadian rhythms of individual honey bees in a social environment reveals social influences on postembryonic ontogeny of activity rhythms. J. Biol. Rhythms 2007, 22, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.; Mummert, L.; Sukthanker, R. Video monitoring of honey bee colonies at the hive entrance. In Proceedings of the Workshop on Visual Observation and Analysis of Animal and Insect Behavior, Tampa, FL, USA, 7 December 2008.
- Chen, C.; Yang, E.-C.; Jiang, J.-A.; Lin, T.-T. An imaging system for monitoring the in-and-out activity of honey bees. Comput. Electron. Agric. 2012, 89, 100–109. [Google Scholar] [CrossRef]
- Arnia Remote Hive Monitoring. Available online: http://www.arnia.co.uk/ (accessed on 8 March 2105).
- Raspberry Pi. Available online: http://www.raspberrypi.org/ (accessed on 8 March 2105).
- Sanford, M.T. Western Apicultural Society Meets in Missoula, Montana: Part 1, 2nd International Workshop on Hive and Bee. Am. Bee J. 2014, 154, 1451–1353. [Google Scholar]
- Sanford, M.T. Western Apicultural Society Meets in Missoula, Montana: Part 2, Was Convention. Am. Bee J. 2015, 155, 97–99. [Google Scholar]
- Meikle, W.G.; Holst, N. Application of continuous monitoring of honeybee colonies. Apidologie 2015, 46, 10–22. [Google Scholar] [CrossRef]
- Bromenshenk, J.J.; Henderson, C.B.; Seccomb, R.A.; Rice, S.D.; Etter, R.T. Honey Bee Acoustic Recording and Analysis System for Monitoring Hive Health. U.S. Patent 7,549,907, 23 June 2009. [Google Scholar]
- Seccomb, R.A. Sonic analysis for rapid detection of varroa mites and other pathologies without opening the beehive. Available online: http://www.reeis.usda.gov/web/crisprojectpages/0218830-sonographic-analysis-for-rapid-detection-of-varroa-mites-and-other-pathologies-without-opening-the-beehive.html (accessed on 2 February 2015).
- Seccomb, R.A. Autonomous reporting and tracking of pesticide incidents in honey bee colonies. Available online: https://www.sbir.gov/printpdf/708862 (accessed on 2 February 2015).
- Evans, H.; Evans, S. Remote hive monitoring. Available online: http://www.apimondia.com/congresses/2013/Economy/Plenary-Session/ (accessed on 2 May 2015).
- Evans, H. Arnia: remote hive monitoring for every beekeeper, Part 1; Arnia: using remote monitoring data, Part 2. Available online: http://www.beeculture.com/arnia-remote-hive-monitoring-every-beekeeper/ and http://www.beeculture.com/arnia-using-remote-hive-monitoring-data/ (accessed on 15 October 2015).
- Brundage, T.J. Acoustic sensor for beehive monitoring. U.S. Patent 20,100,062,683, 11 March 2010. [Google Scholar]
- Kastberger, G.; Stachl, R. Infrared imaging technology and biological applications. Behav. Res. Methods Instrum. Comput. J. Psychon. Soc. Inc. 2003, 35, 429–439. [Google Scholar] [CrossRef]
- Shaw, J.A.; Nugent, P.W.; Johnson, J.; Bromenshenk, J.J.; Henderson, C.B.; Debnam, S. Long-wave infrared imaging for non-invasive beehive population assessment. Opt. Express 2011, 19, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Tautz, J.; Maier, S.; Groh, C.; Rossler, W.; Brockmann, A. Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development. Proc. Natl. Acad. Sci. USA 2003, 100, 7343–7347. [Google Scholar] [CrossRef] [PubMed]
- Basile, R.; Pirk, C.; Tautz, J. Trophallactic activities in the honeybee brood nest—Heaters get supplied with high performance fuel. Zoology 2008, 6, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Carr, L.W.; Fletcher, L.; Holland, P.L.; Leonelli, J.; McPherrin, D.; Althouse, M.L. Characterization of filtered FLIR systems designed for chemical vapor detection and mapping. Proc. SPIE 1990, 1309, 90–103. [Google Scholar]
- Weinstock, G.M.; Robinson, G.E.; Gibbs, R.A.; Weinstock, G.M.; Weinstock, G.M.; Robinson, G.E.; Worley, K.C.; Evans, J.D.; Maleszka, R.; Robertson, H.M.; et al. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 2006, 443, 931–949. [Google Scholar] [CrossRef]
- Bromenshenk, J.J.; Palmer, R.G.; University of Montana: Missoula, MO, USA. Personal Conversation, 2010.
- Suckling, D.M.; Sagar, R.L. Honeybees Apis mellifera can detect the scent of Mycobacterium tuberculosis. Tuberculosis 2011, 91, 327–328. [Google Scholar] [CrossRef] [PubMed]
- Al-mazra’awi, M.S.; Shipp, L.; Broadbent, B.; Kevan, P. Biological control of Lygus lineolaris (Hemiptera: Miridae) and Frankliniella occidentalis (Thysanoptera: Thripidae) by Bombus impatiens (Hymenoptera: Apidae) vectored Beauveria bassiana in greenhouse sweet pepper. Biol.Control 2006, 37, 89–97. [Google Scholar] [CrossRef]
- Kapongo, J.P.; Shipp, L.; Kevan, P.; Broadbent, B. Optimal concentration of Beauveria bassiana vectored by bumble bees in relation to pest and bee mortality in greenhouse tomato and sweet pepper. Biol. Control 2008, 53, 797–812. [Google Scholar] [CrossRef]
- Kapongo, J.P.; Shipp, L.; Kevan, P.; Sutton, J.C. Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumble bees (Bombus impatiens) for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper. Biol. Control 2008, 46, 508–514. [Google Scholar] [CrossRef]
- Kevan, P.G.; Clark, E.A.; Thomas, V.G. Insect pollinators and sustainable agriculture. Am. J. Altern. Agric. 1990, 5, 13–22. [Google Scholar] [CrossRef]
- Sutton, J.C.; Kevan, P.G. New combined technology for promoting sunflower health and productivity. Can. Sunflower Grow. 2013, 2013, 18–19. [Google Scholar]
- Reinhard, J. Floral scents induce recall of navigational and visual memories in honeybees. J. Exp. Biol. 2004, 207, 4371–4381. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.M.; Smith, A.D.; Reynolds, D.R.; Carreck, N.L.; Osborne, J.L. Honeybees perform optimal scale-free searching flights when attempting to locate a food source. J. Exp. Biol. 2007, 210, 3763–3770. [Google Scholar] [CrossRef] [PubMed]
- Tautz, J.; Sandemann, D.C. Recruitment of honeybees to non-scented food sources. J. Comp. Physiol. A Neuroethol. Sens. 2003, 189, 39–45. [Google Scholar]
- Zacepins, A.; Brusbardis, V.; Meitalovs, J.; Stalidzans, E. Challenges in the development of precision beekeeping. Biosyst. Eng. 2015, 130, 60–71. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bromenshenk, J.J.; Henderson, C.B.; Seccomb, R.A.; Welch, P.M.; Debnam, S.E.; Firth, D.R. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome. Biosensors 2015, 5, 678-711. https://doi.org/10.3390/bios5040678
Bromenshenk JJ, Henderson CB, Seccomb RA, Welch PM, Debnam SE, Firth DR. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome. Biosensors. 2015; 5(4):678-711. https://doi.org/10.3390/bios5040678
Chicago/Turabian StyleBromenshenk, Jerry J., Colin B. Henderson, Robert A. Seccomb, Phillip M. Welch, Scott E. Debnam, and David R. Firth. 2015. "Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome" Biosensors 5, no. 4: 678-711. https://doi.org/10.3390/bios5040678
APA StyleBromenshenk, J. J., Henderson, C. B., Seccomb, R. A., Welch, P. M., Debnam, S. E., & Firth, D. R. (2015). Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome. Biosensors, 5(4), 678-711. https://doi.org/10.3390/bios5040678