Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantum defects as versatile anchors for carbon nanotube functionalization

Abstract

Single-wall carbon nanotubes (SWCNTs) are used in diverse applications that require chemical tailoring of the SWCNT surface, including optical sensing, imaging, targeted drug delivery and single-photon generation. SWCNTs have been noncovalently modified with (bio)polymers to preserve their intrinsic near-infrared fluorescence. However, demanding applications (e.g., requiring stability in biological fluids) would benefit from a stable covalent linkage between the SWCNT and the functional unit (e.g., antibody, fluorophore, drug). Here we present how to use diazonium salt chemistry to introduce sp3 quantum defects in the SWCNT carbon lattice to serve as handles for conjugation while preserving near-infrared fluorescence. In this protocol, we describe the straightforward, stable (covalent), highly versatile and scalable functionalization of SWCNTs with biomolecules such as peptides and proteins to yield near-infrared fluorescent SWCNT bioconjugates. We provide a step-by-step procedure covering SWCNT dispersion, quantum defect incorporation, bioconjugation, in situ peptide synthesis on SWCNTs, and characterization, which can be completed in 5–7 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modular chemistry with quantum defects on SWCNTs.
Fig. 2: Workflow of quantum defect incorporation and bioconjugation.
Fig. 3: Custom-built NIR fluorescence spectrometer.
Fig. 4: Well-plate system for light-catalyzed reactions.
Fig. 5: Observation of the defect reaction by fluorescence spectroscopy.
Fig. 6: Larger-scale defect incorporation.
Fig. 7: SWCNT–peptide synthesis in a 96-well filter plate.
Fig. 8: Assessment of successful functionalization.
Fig. 9: Assessment of SWCNT–peptide synthesis.

Similar content being viewed by others

Data availability

The authors declare that the main data discussed in this protocol are available in the supporting primary research paper35. The raw datasets are available for research purposes from the corresponding authors upon reasonable request and are publicly available in the repository https://doi.org/10.6084/m9.figshare.16595093.

References

  1. Hayashi, T. et al. Smallest freestanding single-walled carbon nanotube. Nano Lett. 3, 887–889 (2003).

    Article  CAS  Google Scholar 

  2. O’Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  PubMed  Google Scholar 

  3. Welsher, K. et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4, 773–780 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, Z., Tabakman, S. M., Chen, Z. & Dai, H. Preparation of carbon nanotube bioconjugates for biomedical applications. Nat. Protoc. 4, 1372–1381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Galassi, T. V. et al. An optical nanoreporter of endolysosomal lipid accumulation reveals enduring effects of diet on hepatic macrophages in vivo. Sci. Transl. Med. 10, eaar2680 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4, 86–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Gillen, A. J. & Boghossian, A. A. Non-covalent methods of engineering optical sensors based on single-walled carbon nanotubes. Front. Chem. 7, 13713–13793 (2019).

    Article  Google Scholar 

  8. Mann, F. A., Lv, Z., Grosshans, J., Opazo, F. & Kruss, S. Nanobody conjugated nanotubes for targeted near‐infrared in vivo imaging and sensing. Angew. Chem. Int. Ed. 58, 11469–11473 (2019).

    Article  CAS  Google Scholar 

  9. Mann, F. A., Herrmann, N., Meyer, D. & Kruss, S. Tuning selectivity of fluorescent carbon nanotube-based neurotransmitter sensors. Sensors 17, 1521 (2017).

    Article  PubMed Central  Google Scholar 

  10. Dinarvand, M. et al. Near-infrared imaging of serotonin release from cells with fluorescent nanosensors. Nano Lett. 19, 6604–6611 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Kruss, S. et al. High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array. Proc. Natl Acad. Sci. USA 114, 1789–1794 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kruss, S. et al. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors. J. Am. Chem. Soc. 136, 713–724 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, H. et al. Monitoring plant health with near-infrared fluorescent H2O2 nanosensors. Nano Lett. 20, 2432–2442 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Bisker, G. et al. Protein-targeted corona phase molecular recognition. Nat. Commun. 7, 1–14 (2016).

    Article  Google Scholar 

  15. Williams, R. M., Lee, C. & Heller, D. A. A fluorescent carbon nanotube sensor detects the metastatic prostate cancer biomarker uPA. ACS Sens. 3, 1838–1845 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Holzinger, M. et al. Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed. 40, 4002–4005 (2001).

    Article  CAS  Google Scholar 

  17. Huang, W. J. et al. Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett. 2, 311–314 (2002).

    Article  CAS  Google Scholar 

  18. Pantarotto, D., Briand, J.-P., Prato, M. & Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes [supplementary information]. Chem. Commun. 1, 16–17 (2004).

  19. Ghosh, S., Bachilo, S. M., Simonette, R. A., Beckingham, K. M. & Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330, 1656–1659 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Miyauchi, Y. et al. Brightening of excitons in carbon nanotubes on dimensionality modification. Nat. Photonics 7, 715–719 (2013).

    Article  CAS  Google Scholar 

  21. Piao, Y. M. et al. Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nat. Chem. 5, 840–845 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Kwon, H. et al. Molecularly tunable fluorescent quantum defects. J. Am. Chem. Soc. 138, 6878–6885 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He, X. et al. Carbon nanotubes as emerging quantum-light sources. Nat. Mater. 17, 663–670 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. He, X. et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat. Photonics 11, 577–582 (2017).

    Article  CAS  Google Scholar 

  25. Hertel, T., Himmelein, S., Ackermann, T., Stich, D. & Ќ, J. C. Diffusion limited photoluminescence quantum yields in 1-D semiconductors. ACS Nano 4, 7161–7168 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Danné, N. et al. Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared. ACS Nano 12, 6059–6065 (2018).

    Article  PubMed  Google Scholar 

  27. Kwon, H. et al. Optical probing of local pH and temperature in complex fluids with covalently functionalized, semiconducting carbon nanotubes. J. Phys. Chem. C. 119, 3733–3739 (2015).

    Article  CAS  Google Scholar 

  28. Shiraki, T., Onitsuka, H., Shiraishi, T. & Nakashima, N. Near infrared photoluminescence modulation of single-walled carbon nanotubes based on a molecular recognition approach. Chem. Commun. 52, 12972–12975 (2016).

    Article  CAS  Google Scholar 

  29. Setaro, A. et al. Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications. Nat. Commun. 8, 14281 (2017).

  30. Chio, L., Pinals, R. L., Murali, A., Goh, N. S. & Landry, M. P. Covalent surface modification effects on single-walled carbon nanotubes for targeted sensing and optical imaging. Adv. Funct. Mater. 30, 1910556 (2020).

  31. Gifford, B. J., Kilina, S., Htoon, H., Doorn, S. K. & Tretiak, S. Controlling defect-state photophysics in covalently functionalized single-walled carbon nanotubes. Acc. Chem. Res. 53, 1791–1801 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Mandal, A. K. et al. Fluorescent sp3 defect-tailored carbon nanotubes enable NIR-II single particle imaging in live brain slices at ultra-low excitation doses. Sci. Rep. 10, 5286 (2020).

  33. Shiraki, T., Miyauchi, Y., Matsuda, K. & Nakashima, N. Carbon nanotube photoluminescence modulation by local chemical and supramolecular chemical functionalization. Acc. Chem. Res. 53, 1846–1859 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Clément, P. et al. A one-step chemical strategy for the formation of carbon nanotube junctions in aqueous solution: reaction of DNA-wrapped carbon nanotubes with diazonium salts. Chempluschem 84, 1235–1238 (2019).

    Article  PubMed  Google Scholar 

  35. Mann, F. A., Herrmann, N., Opazo, F. & Kruss, S. Quantum defects as a toolbox for the covalent functionalization of carbon nanotubes with peptides and proteins. Angew. Chem. Int. Ed. Engl. https://doi.org/10.1002/anie.202003825 (2020).

  36. Brozena, A. H., Kim, M., Powell, L. R. & Wang, Y. Controlling the optical properties of carbon nanotubes with organic colour-centre quantum defects. Nat. Rev. Chem. 3, 375–392 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chiu, C. F., Saidi, W. A., Kagan, V. E. & Star, A. Defect-induced near-infrared photoluminescence of single-walled carbon nanotubes treated with polyunsaturated fatty acids. J. Am. Chem. Soc. 139, 4859–4865 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Georgakilas, V. et al. Amino acid functionalisation of water soluble carbon nanotubes. Chem. Commun. 0, 3050–3051 (2002).

    Article  CAS  Google Scholar 

  39. Pantarotto, D. et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43, 5242–5246 (2004).

    Article  CAS  Google Scholar 

  40. Wu, W. et al. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. 44, 6358–6362 (2005).

    Article  CAS  Google Scholar 

  41. Prato, M. & Kostarelos, K. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 41, 60–68 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. Engl. 41, 1853–1859 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Helma, J., Cardoso, M. C., Muyldermans, S. & Leonhardt, H. Nanobodies and recombinant binders in cell biology. J. Cell Biol. 209, 633–644 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Spreinat, A. et al. Quantum defects in fluorescent carbon nanotubes for sensing and mechanistic studies. J. Phys. Chem. C. 125, 18341–18351 (2021).

    Article  CAS  Google Scholar 

  46. Nißler, R. et al. Remote near infrared identification of pathogens with multiplexed nanosensors. Nat. Commun. 11, 5995 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Powell, L. R., Piao, Y. & Wang, Y. Optical excitation of carbon nanotubes drives localized diazonium reactions. J. Phys. Chem. Lett. 7, 3690–3694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo, H. B. et al. One-pot, large-scale synthesis of organic color center-tailored semiconducting carbon nanotubes. ACS Nano 13, 8417–8424 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Kim, M. et al. Mapping structure–property relationships of organic color centers. Chem 4, 2180–2191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dong, L., Witkowski, C. M., Craig, M. M., Greenwade, M. M. & Joseph, K. L. Cytotoxicity effects of different surfactant molecules conjugated to carbon nanotubes on human astrocytoma cells. Nanoscale Res. Lett. 4, 1517–1523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, Y. et al. Fluorescent ultrashort nanotubes from defect-induced chemical cutting. Chem. Mater. 31, 4536–4544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, K., Xu, X.-H. & Qing, F.-L. Copper-promoted Ritter-type trifluoroethoxylation of (hetero)arenediazonium tetrafluoroborates: a method for the preparation of trifluoroethyl imidates. Eur. J. Org. Chem. 2016, 5088–5090 (2016).

    Article  CAS  Google Scholar 

  53. Schöppler, F. et al. Molar extinction coefficient of single-wall carbon nanotubes. J. Phys. Chem. C. 115, 14682–14686 (2011).

    Article  Google Scholar 

  54. Ravasco, J. M. J. M., Faustino, H., Trindade, A. & Gois, P. M. P. Bioconjugation with maleimides: a useful tool for chemical biology. Chem. Eur. J. 25, 43–59 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Kumar, A., Biebuyck, H. A. & Whitesides, G. M. Patterning self-assembled monolayers: applications in materials science. Langmuir 10, 1498–1511 (1994).

    Article  CAS  Google Scholar 

  56. Harper, J. C., Polsky, R., Wheeler, D. R. & Brozik, S. M. Maleimide-activated aryl diazonium salts for electrode surface functionalization with biological and redox-active molecules. Langmuir 24, 2206–2211 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy–EXC 2033–390677874–RESOLV. This project was supported by the VW Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.K. and F.A.M. designed and conceived the project. S.K. coordinated the project. N.H. performed MalPh diazonium salt synthesis, NMR/MS analysis and initial experiments, and optimized the conditions for MalPh-defect incorporation. F.A.M. performed AFM experiments, synthesized the Fmoc-Phe diazonium salt with N.H., optimized the conditions for Fmoc-Phe defect incorporation, performed the nanobody conjugation and validation experiments, synthesized multicolor SWCNTs, SWCNT-R6 and performed the 96-well SWCNT–peptide synthesis as well as the subsequent characterization. F.A.M., P.G., N.H. and S.K wrote the manuscript.

Corresponding author

Correspondence to Sebastian Kruss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Hyejin Kwon and YuHuang Wang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Mann, F. A. et al. Angew. Chem. Int. Ed. Engl. 59,17732–17738 (2020): https://doi.org/10.1002/anie.202003825

Spreinat, A. et al. J. Phys. Chem. C 125, 18341–18351 (2021): https://doi.org/10.1021/acs.jpcc.1c05432

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mann, F.A., Galonska, P., Herrmann, N. et al. Quantum defects as versatile anchors for carbon nanotube functionalization. Nat Protoc 17, 727–747 (2022). https://doi.org/10.1038/s41596-021-00663-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00663-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing