Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Fatigue behavior of high-entropy alloys: A review

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Fatigue failures cost approximately 4% of the United States’ gross domestic product (GDP). The design of highly fatigue-resistant materials is always in demand. Different from conventional strategies of alloy design, high-entropy alloys (HEAs) are defined as materials with five or more principal elements, which could be solid solutions. This locally-disordered structure is expected to lead to unique fatigue-resistant properties. In this review, the studies of the fatigue behavior of HEAs during the last five years are summarized. The four-point-bending high-cycle fatigue coupled with statistical modelling, and the fatigue-crack-growth behavior of HEAs, are reviewed. The effects of sample defects and nanotwins-deformation mechanisms on four-point-bending high-cycle fatigue of HEAs are discussed in detail. The influence of stress ratio and temperature on fatigue-crack-growth characteristics of HEAs is also discussed. HEAs could exhibit comparable or greater fatigue properties, relative to conventional materials. Finally, the possible future work regarding the fatigue behavior of HEAs is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reed R P. The Economic Effects of Fracture in the United States. US Department of Commerce, National Bureau of Standards, 1983

    Google Scholar 

  2. Nahm H, Moteff J. Second phase formation and its influence on the fatigue properties of incoloy 800 at elevated temperatures. Metallur Trans A, 1976, 7: 1473–1477

    Article  Google Scholar 

  3. Vardiman R G, Kant R A. The improvement of fatigue life in Ti-6Al-4V by ion implantation. J Appl Phys, 1982, 53: 690–694

    Article  Google Scholar 

  4. Lockyer S A, Noble F W. Fatigue of precipitate strengthened Cu-Ni-Si alloy. Mater Sci Tech, 1999, 15: 1147–1153

    Article  Google Scholar 

  5. Hemphill M A, Yuan T, Wang G Y, et al. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater, 2012, 60: 5723–5734

    Article  Google Scholar 

  6. Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303

    Article  Google Scholar 

  7. Santodonato L J, Zhang Y, Feygenson M, et al. Deviation from highentropy configurations in the atomic distributions of a multi-principalelement alloy. Nat Commun, 2015, 6: 5964

    Article  Google Scholar 

  8. Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93

    Article  Google Scholar 

  9. Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng-A, 2004, 375-377: 213–218

    Article  Google Scholar 

  10. Guo S, Liu C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog Nat Sci-Mater Int, 2011, 21: 433–446

    Article  Google Scholar 

  11. Ng C, Guo S, Luan J, et al. Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrFeNi high entropy alloy. Intermetallics, 2012, 31: 165–172

    Article  Google Scholar 

  12. Gao M C, Yeh J W, Liaw P K, et al. High-Entropy Alloys: Fundamentals and Applications. Cham: Springer International Publishing, 2016

    Book  Google Scholar 

  13. Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater, 2008, 10: 534–538

    Article  Google Scholar 

  14. Lu Z P, Wang H, Chen M W, et al. An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics, 2015, 66: 67–76

    Article  Google Scholar 

  15. Carroll R, Lee C, Tsai C W, et al. Experiments and model for serration statistics in low-entropy, medium-entropy, and high-entropy alloys. Sci Rep, 2015, 5: 16997

    Article  Google Scholar 

  16. Poletti M G, Branz S, Fiore G, et al. Equilibrium high entropy phases in X-NbTaTiZr (X=Al, V, Cr and Sn) multiprincipal component alloys. J Alloys Compd, 2016, 655: 138–146

    Article  Google Scholar 

  17. Shun T T, Du Y C. Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy. J Alloys Compd, 2009, 479: 157–160

    Article  Google Scholar 

  18. Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345: 1153–1158

    Article  Google Scholar 

  19. Li D, Li C, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater, 2017, 123: 285–294

    Article  Google Scholar 

  20. Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys. Intermetallics, 2010, 18: 1758–1765

    Article  Google Scholar 

  21. Gao M C, Zhang B, Guo S M, et al. High-entropy alloys in hexagonal close-packed structure. Metall Mat Trans A, 2016, 47: 3322–3332

    Article  Google Scholar 

  22. Feuerbacher M, Heidelmann M, Thomas C. Hexagonal high-entropy alloys. Mater Res Lett, 2015, 3: 1–6

    Article  Google Scholar 

  23. Takeuchi A, Amiya K, Wada T, et al. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM, 2014, 66: 1984–1992

    Article  Google Scholar 

  24. Youssef K M, Zaddach A J, Niu C, et al. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater Res Lett, 2015, 3: 95–99

    Article  Google Scholar 

  25. Wu J M, Lin S J, Yeh J W, et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 2006, 261: 513–519

    Article  Google Scholar 

  26. Shi Y, Yang B, Liaw P. Corrosion-resistant high-entropy alloys: A review. Metals, 2017, 7: 43

    Article  Google Scholar 

  27. Rao Z, Wang X, Wang Q, et al. Microstructure, mechanical properties, and oxidation behavior of AlxCr0.4CuFe0.4 MnNi high entropy alloys. Adv Eng Mater, 2017, 19: 1600726

    Article  Google Scholar 

  28. Shi Y, Yang B, Xie X, et al. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corrosion Sci, 2017, 119: 33–45

    Article  Google Scholar 

  29. Zuo T, Gao M C, Ouyang L, et al. Tailoring magnetic behavior of CoFeMnNiX (X= Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater, 2017, 130: 10–18

    Article  Google Scholar 

  30. Zhang Z J, Mao M M, Wang J, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun, 2015, 6: 10143

    Article  Google Scholar 

  31. Seifi M, Li D, Yong Z, et al. Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys. JOM, 2015, 67: 2288–2295

    Article  Google Scholar 

  32. Tang Z, Yuan T, Tsai C W, et al. Fatigue behavior of a wrought Al0.5CoCrFeNi two-phase high-entropy alloy. Acta Mater, 2015, 99: 247–258

    Article  Google Scholar 

  33. Pascual F G, Meeker W Q. Estimating fatigue curves with the random fatigue-limit model. Technometrics, 1999, 41: 277–289

    Article  Google Scholar 

  34. Escobar A, Meeker Q. Statistical Methods for Reliability Data. New York: John Wiley & Sons, 1998

    MATH  Google Scholar 

  35. Meeker W Q, LuValle M J. An accelerated life test model based on reliability kinetics. Technometrics, 1995, 37: 133–146

    Article  MATH  Google Scholar 

  36. Glaser R E. Estimation for a weibull accelerated life testing model. Naval Res Logistics, 1984, 31: 559–570

    Article  MathSciNet  MATH  Google Scholar 

  37. Liaw P K, Hudak S J, Donald J K. Influence of gaseous environments on rates of near-threshold fatigue crack propagation in nicrmov steel. Metallur Trans A, 1982, 13: 1633–1645

    Article  Google Scholar 

  38. Liaw P K, Leax T R, Swaminathan V P, et al. Influence of load ratio on near-threshold fatigue crack propagation behavior. Scripta Metall, 1982, 16: 871–876

    Article  Google Scholar 

  39. Liaw P K, Leax T R, Williams R S, et al. Near-threshold fatigue crack growth behavior in copper. Metallur Trans A, 1982, 13: 1607–1618

    Article  Google Scholar 

  40. Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International, West Conshohocken, 2015

    Google Scholar 

  41. Zinsser Jr W A, Lewandowski J J. Effects of R-ratio on the fatigue crack growth of Nb-Si(ss) and Nb-10Si in situ composites. Metall Mat Trans A, 1998, 29: 1749–1757

    Article  Google Scholar 

  42. Shang J K, Yu W, Ritchie R O. Role of silicon carbide particles in fatigue crack growth in SiC-particulate-reinforced aluminum alloy composites. Mater Sci Eng-A, 1988, 102: 181–192

    Article  Google Scholar 

  43. El-Shabasy A. Effects of load ratio, R, and test temperature on fatigue crack growth of fully pearlitic eutectoid steel (fatigue crack growth of pearlitic steel). Int J Fatigue, 2004, 26: 305–309

    Article  Google Scholar 

  44. Dahar M S, Seifi S M, Bewlay B P, et al. Effects of test orientation on fracture and fatigue crack growth behavior of third generation as-cast Ti-48Al-2Nb-2Cr. Intermetallics, 2015, 57: 73–82

    Article  Google Scholar 

  45. Thurston K V S, Gludovatz B, Hohenwarter A, et al. Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi. Intermetallics, 2017, 88: 65–72

    Article  Google Scholar 

  46. Gilbert C J, Ritchie R O, Johnson W L. Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl Phys Lett, 1997, 71: 476–478

    Article  Google Scholar 

  47. Masounave J, Baflon J P. Effect of grain size on the threshold stress intensity factor in fatigue of a ferritic steel. Scripta Metall, 1976, 10: 165–170

    Article  Google Scholar 

  48. Stewart A T. The influence of environment and stress ratio on fatigue crack growth at near threshold stress intensities in low-alloy steels. Eng Fract Mech, 1980, 13: 463–478

    Article  Google Scholar 

  49. Boyce B L, Ritchie R O. Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti-6Al-4V. Eng Fract Mech, 2001, 68: 129–147

    Article  Google Scholar 

  50. Suresh S, Ritchie R O. A geometric model for fatigue crack closure induced by fracture surface roughness. Metallur Trans A, 1982, 13: 1627–1631

    Article  Google Scholar 

  51. Liaw P K, Saxena A, Swaminathan V P, et al. Effects of load ratio and temperature on the near-threshold fatigue crack propagation behavior in a CrMoV steel. Metallur Trans A, 1983, 14: 1631–1640

    Article  Google Scholar 

  52. Tsai C W, Chen Y L, Tsai M H, et al. Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrFeNi. J Alloys Compd, 2009, 486: 427–435

    Article  Google Scholar 

  53. Laplanche G, Kostka A, Horst O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater, 2016, 118: 152–163

    Article  Google Scholar 

  54. Sathiaraj G D, Bhattacharjee P P, Tsai C W, et al. Effect of heavy cryorolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy. Intermetallics, 2016, 69: 1–9

    Article  Google Scholar 

  55. Yu P F, Cheng H, Zhang L J, et al. Nanotwin’s formation and growth in an AlCoCuFeNi high-entropy alloy. Scripta Mater, 2016, 114: 31–34

    Article  Google Scholar 

  56. Wang Z, Baker I. Interstitial strengthening of a f.c.c. FeNiMnAlCr high entropy alloy. Mater Lett, 2016, 180: 153–156

    Article  Google Scholar 

  57. Zhang X, Misra A, Wang H, et al. Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Appl Phys Lett, 2004, 84: 1096–1098

    Article  Google Scholar 

  58. Gray G T, Williams J C, Thompson A W. Roughness-induced crack closure: An explanation for microstructurally sensitive fatigue crack growth. Metallur Trans A, 1983, 14: 421–433

    Article  Google Scholar 

  59. Llorca J. Roughness-induced fatigue crack closure: A numerical study. Fatigue Fracture Eng Mater Struct, 1992, 15: 655–669

    Article  Google Scholar 

  60. Morris W L, James M R, Buck O. A simple model of stress intensity range threshold and crack closure stress. Eng Fract Mech, 1983, 18: 871–877

    Article  Google Scholar 

  61. Gludovatz B, George E P, Ritchie R O. Processing, microstructure and mechanical properties of the CrMnFeCoNi high-entropy alloy. JOM, 2015, 67: 2262–2270

    Article  Google Scholar 

  62. Yang J, Putatunda S K. Near threshold fatigue crack growth behavior of austempered ductile cast iron (ADI) processed by a novel two-step austempering process. Mater Sci Eng-A, 2005, 393: 254–268

    Article  Google Scholar 

  63. Tang Z, Huang L, He W, et al. Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys. Entropy, 2014, 16: 895–911

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Liaw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Lee, C., Wang, SY. et al. Fatigue behavior of high-entropy alloys: A review. Sci. China Technol. Sci. 61, 168–178 (2018). https://doi.org/10.1007/s11431-017-9137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9137-4

Keywords

Navigation