Abstract
The influence of hydrogen environment (448 kPa) on near-threshold fatigue crack propagation rates was examined in a 779 MPa yield strength NiCrMoV steel at 93 °C. An automatically decreasing and increasing stress intensity technique was employed to generate crack growth rates at three load ratios(R = 0.1, 0.5, and 0.8). Results show that the crack propagation rates in hydrogen are slower than those in air for levels of stress intensity range, ΔK, below about 12 MPa√m. The crack closure concept does not explain the slower crack growth rates in hydrogen than in air. Near-threshold growth rates appear to be controlled by the levels of residual moisture in the environments. In argon and air, the fracture morphology is transgranular, while in H2 the amount of intergranularity varies with ΔK and achieves a maximum when the cyclic plastic zone is approximately equal to the prior austenite grain size.
Similar content being viewed by others
References
R. J. Bucci, W. G. Cark, Jr., and P. C. Paris : inStress Analysis and Growth of Cracks, ASTM STP 513, 1972, p. 177.
R. O. Ritchie:International Metals Review, 1979, vol. 20, p. 205.
J. Masounave and J. P. Bailon:Scripta Met., 1976, vol. 10, p. 165.
J. Masounave and J. P. Bailon:Proc. 2nd Int. Conf. on Mechanical Behavior of Materials, ASM, Metals Park, OH, 1976, p. 636.
R. O. Ritchie:Fracture 1977, D. M. R. Taplin, ed., Waterloo, Ontario, University of Waterloo Press, 1977, vol. 2, p. 1325.
R. O. Ritchie:Met. Sci., 1977, vol. 11, p. 368.
J. L. Robinson and C. J. Beevers:Met. Sci., 1973, vol. 7, p. 153.
P. E. Irving and C. J. Beevers:Mat. Sci. Eng., 1974, vol. 14, p. 229.
G. R. Yoder, L. A. Cooley, and T. W. Crooker:J. Eng. Matl. Tech., ASME, 1979, vol. 101, p. 86.
J. McKittrick, P. K. Liaw, S. I. Kwun, and M. E. Fine:Metall. Trans. A, 1981, vol. 12A, p. 1535.
P. C. Paris, R. J. Bucci, E. T. Wessel, W. G. Cark, Jr., and T. R. Mager: inStress Analysis and Growth of Cracks, ASTM STP 513, 1972, p. 141.
J. Petit and J. L. Maillard:Scripta Met., 1980, vol. 14, p. 163.
P. E. Irving and A. Kurzfeld:Met. Sci., 1978, vol. 12, p. 495.
R. J. Cooke, P. E. Irving, G. S. Booth, and C. J. Beevers:Eng. Fract. Mech., 1975, vol. 7, p. 69.
P. K. Liaw, S. J. Hudak, Jr., and J. K. Donald: 14th National Symposium on Fracture Mechanics, ASTM STP, 1981, in press.
R. O. Ritchie, S. Suresh, and J. Toplosky: MIT Fatigue and Plasticity Laboratory, Report No. FPL/R/80/1030, Cambridge, MA, 1980.
R. O. Ritchie: Proceedings of the Intl. Conf. on Analytical and Experimental Fracture Mechanics, Rome, June 1980, G. C. Sih, ed., Sijthoff and Noordhoff, the Netherlands, p. 81.
T. T. Shih and J. K. Donald:J. of Engineering Materials and Technology, 1981, vol. 103, p. 104.
R. O. Ritchie, C. M. Moss, and S. Suresh: MIT Fatigue and Plasticity Laboratory, Report No. FPL/R/79/1025, Cambridge, MA, 1979.
A. T. Stewart:Eng. Fract. Mech., 1980, vol. 13, p. 463.
R. O. Ritchie: MIT Fatigue and Plasticity Laboratory, Annual Report No. 1 for Department of Energy — Fossil Energy Research 12-66-79, Cambridge, MA, 1979.
W. G. Cark, Jr. and L. J. Ceschini:J. of Materials for Energy Systems, 1981, vol. 3, p. 42.
H. D. Greenberg, E. T. Wessel, W. G. Clark, Jr., and W. H. Pryle: Westinghouse R&D Center, Pittsburgh, PA, unpublished research, 1969.
W. G. Clark, Jr., Westinghouse R&D Center, Pittsburgh, PA, unpublished research, 1970.
Annual ASTM Standards—E647, 1980, p. 753.
Ashok Saxena, S. J. Hdak, Jr., J. K. Donald, and D. W. Schmidt:J. of Testing and Evaluation, 1978, vol. 6, p. 167.
Ashok Saxena, S. J. Hdak and Jr.:Int. J. of Fract., 1978, vol. 14, p. 453.
R. J. Cooke and C. J. Beevers:Matl. Sci. and Eng., 1974, vol. 13, p. 201.
R. J. Cooke and C. J. Beevers:Eng. Fract. Mech., 1973, vol. 5, p. 1061.
C. S. White: SB Thesis, MIT, Cambridge, MA, May 1980.
M. Kikukawa, M. Jona, and K. Tanaka: Proceedings of the Second International Conf. on Mechanical Behavior of Materials, N. Promisel and V. Weiss, eds., Boston, MA, ASM, Metals Park, OH, 1976, p. 716.
S. Purushothaman and J. K. Tien: Fifth Conference on the Strength of Metals and Alloys, Proc. ICSMA5 Conf., Pergamon Press, New York, NY, 1979, vol. 2, p. 1267.
A. J. McEvily:Metal Science, 1977, vol. 11, p. 274.
J. A. Vazquez, A. Morrone, and H. Ernst:Eng. Fract. Mech., 1979, vol. 12, p. 231.
H. H. Johnson and A. M. Willner:Applied Materials Research, 1965, vol. 4, p. 34.
J. Toplosky and R. O. Ritchie:Scripta Met., 1981, vol. 15, p. 905.
P. K. Liaw, T. R. Leax, R. S. Williams, and M. G. Peck:Acta Met., in press.
R. O. Ritchie, S. Suresh, and P. K. Liaw: Proceedings of the 1st Int. Conference on Ultrasonic Fatigue and Corrosion Fatigue, J. M. Wells,et al, eds.,TMS-AIME, Warrendale, PA, 1982, in press.
J. R. Rice: inFatigue Crack Propagation, ASTM STP 415, 1967, p. 247.
J. D. Frandsen and H. L. Marcus:Scripta Met., 1975, vol. 9, p. 1089.
G. R. Yoder, L. A. Cooley, and T. W. Crooker: 14th National Symposium on Fracture Mechanics, ASTM STP, 1981, in press.
E. H. Niccolls:Scripta Met., 1976, vol. 10, p. 295.
L. N. McCartney and P. E. Irving:Scripta Met., 1977, vol. 11, p. 181.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Liaw, P.K., Hudak, S.J. & Donald, J.K. Influence of gaseous environments on rates of near-threshold fatigue crack propagation in nicrmov steel. Metall Trans A 13, 1633–1645 (1982). https://doi.org/10.1007/BF02644804
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02644804