Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Influence of gaseous environments on rates of near-threshold fatigue crack propagation in nicrmov steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The influence of hydrogen environment (448 kPa) on near-threshold fatigue crack propagation rates was examined in a 779 MPa yield strength NiCrMoV steel at 93 °C. An automatically decreasing and increasing stress intensity technique was employed to generate crack growth rates at three load ratios(R = 0.1, 0.5, and 0.8). Results show that the crack propagation rates in hydrogen are slower than those in air for levels of stress intensity range, ΔK, below about 12 MPa√m. The crack closure concept does not explain the slower crack growth rates in hydrogen than in air. Near-threshold growth rates appear to be controlled by the levels of residual moisture in the environments. In argon and air, the fracture morphology is transgranular, while in H2 the amount of intergranularity varies with ΔK and achieves a maximum when the cyclic plastic zone is approximately equal to the prior austenite grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Bucci, W. G. Cark, Jr., and P. C. Paris : inStress Analysis and Growth of Cracks, ASTM STP 513, 1972, p. 177.

  2. R. O. Ritchie:International Metals Review, 1979, vol. 20, p. 205.

    Google Scholar 

  3. J. Masounave and J. P. Bailon:Scripta Met., 1976, vol. 10, p. 165.

    Article  CAS  Google Scholar 

  4. J. Masounave and J. P. Bailon:Proc. 2nd Int. Conf. on Mechanical Behavior of Materials, ASM, Metals Park, OH, 1976, p. 636.

    Google Scholar 

  5. R. O. Ritchie:Fracture 1977, D. M. R. Taplin, ed., Waterloo, Ontario, University of Waterloo Press, 1977, vol. 2, p. 1325.

    Google Scholar 

  6. R. O. Ritchie:Met. Sci., 1977, vol. 11, p. 368.

    Article  CAS  Google Scholar 

  7. J. L. Robinson and C. J. Beevers:Met. Sci., 1973, vol. 7, p. 153.

    CAS  Google Scholar 

  8. P. E. Irving and C. J. Beevers:Mat. Sci. Eng., 1974, vol. 14, p. 229.

    Article  CAS  Google Scholar 

  9. G. R. Yoder, L. A. Cooley, and T. W. Crooker:J. Eng. Matl. Tech., ASME, 1979, vol. 101, p. 86.

    CAS  Google Scholar 

  10. J. McKittrick, P. K. Liaw, S. I. Kwun, and M. E. Fine:Metall. Trans. A, 1981, vol. 12A, p. 1535.

    Google Scholar 

  11. P. C. Paris, R. J. Bucci, E. T. Wessel, W. G. Cark, Jr., and T. R. Mager: inStress Analysis and Growth of Cracks, ASTM STP 513, 1972, p. 141.

  12. J. Petit and J. L. Maillard:Scripta Met., 1980, vol. 14, p. 163.

    Article  CAS  Google Scholar 

  13. P. E. Irving and A. Kurzfeld:Met. Sci., 1978, vol. 12, p. 495.

    CAS  Google Scholar 

  14. R. J. Cooke, P. E. Irving, G. S. Booth, and C. J. Beevers:Eng. Fract. Mech., 1975, vol. 7, p. 69.

    Article  CAS  Google Scholar 

  15. P. K. Liaw, S. J. Hudak, Jr., and J. K. Donald: 14th National Symposium on Fracture Mechanics, ASTM STP, 1981, in press.

  16. R. O. Ritchie, S. Suresh, and J. Toplosky: MIT Fatigue and Plasticity Laboratory, Report No. FPL/R/80/1030, Cambridge, MA, 1980.

  17. R. O. Ritchie: Proceedings of the Intl. Conf. on Analytical and Experimental Fracture Mechanics, Rome, June 1980, G. C. Sih, ed., Sijthoff and Noordhoff, the Netherlands, p. 81.

  18. T. T. Shih and J. K. Donald:J. of Engineering Materials and Technology, 1981, vol. 103, p. 104.

    Article  CAS  Google Scholar 

  19. R. O. Ritchie, C. M. Moss, and S. Suresh: MIT Fatigue and Plasticity Laboratory, Report No. FPL/R/79/1025, Cambridge, MA, 1979.

  20. A. T. Stewart:Eng. Fract. Mech., 1980, vol. 13, p. 463.

    Article  CAS  Google Scholar 

  21. R. O. Ritchie: MIT Fatigue and Plasticity Laboratory, Annual Report No. 1 for Department of Energy — Fossil Energy Research 12-66-79, Cambridge, MA, 1979.

  22. W. G. Cark, Jr. and L. J. Ceschini:J. of Materials for Energy Systems, 1981, vol. 3, p. 42.

    Article  Google Scholar 

  23. H. D. Greenberg, E. T. Wessel, W. G. Clark, Jr., and W. H. Pryle: Westinghouse R&D Center, Pittsburgh, PA, unpublished research, 1969.

  24. W. G. Clark, Jr., Westinghouse R&D Center, Pittsburgh, PA, unpublished research, 1970.

  25. Annual ASTM Standards—E647, 1980, p. 753.

  26. Ashok Saxena, S. J. Hdak, Jr., J. K. Donald, and D. W. Schmidt:J. of Testing and Evaluation, 1978, vol. 6, p. 167.

    Google Scholar 

  27. Ashok Saxena, S. J. Hdak and Jr.:Int. J. of Fract., 1978, vol. 14, p. 453.

    Article  Google Scholar 

  28. R. J. Cooke and C. J. Beevers:Matl. Sci. and Eng., 1974, vol. 13, p. 201.

    Article  CAS  Google Scholar 

  29. R. J. Cooke and C. J. Beevers:Eng. Fract. Mech., 1973, vol. 5, p. 1061.

    Article  CAS  Google Scholar 

  30. C. S. White: SB Thesis, MIT, Cambridge, MA, May 1980.

  31. M. Kikukawa, M. Jona, and K. Tanaka: Proceedings of the Second International Conf. on Mechanical Behavior of Materials, N. Promisel and V. Weiss, eds., Boston, MA, ASM, Metals Park, OH, 1976, p. 716.

  32. S. Purushothaman and J. K. Tien: Fifth Conference on the Strength of Metals and Alloys, Proc. ICSMA5 Conf., Pergamon Press, New York, NY, 1979, vol. 2, p. 1267.

  33. A. J. McEvily:Metal Science, 1977, vol. 11, p. 274.

    CAS  Google Scholar 

  34. J. A. Vazquez, A. Morrone, and H. Ernst:Eng. Fract. Mech., 1979, vol. 12, p. 231.

    Article  CAS  Google Scholar 

  35. H. H. Johnson and A. M. Willner:Applied Materials Research, 1965, vol. 4, p. 34.

    CAS  Google Scholar 

  36. J. Toplosky and R. O. Ritchie:Scripta Met., 1981, vol. 15, p. 905.

    Article  CAS  Google Scholar 

  37. P. K. Liaw, T. R. Leax, R. S. Williams, and M. G. Peck:Acta Met., in press.

  38. R. O. Ritchie, S. Suresh, and P. K. Liaw: Proceedings of the 1st Int. Conference on Ultrasonic Fatigue and Corrosion Fatigue, J. M. Wells,et al, eds.,TMS-AIME, Warrendale, PA, 1982, in press.

  39. J. R. Rice: inFatigue Crack Propagation, ASTM STP 415, 1967, p. 247.

  40. J. D. Frandsen and H. L. Marcus:Scripta Met., 1975, vol. 9, p. 1089.

    Article  CAS  Google Scholar 

  41. G. R. Yoder, L. A. Cooley, and T. W. Crooker: 14th National Symposium on Fracture Mechanics, ASTM STP, 1981, in press.

  42. E. H. Niccolls:Scripta Met., 1976, vol. 10, p. 295.

    Article  Google Scholar 

  43. L. N. McCartney and P. E. Irving:Scripta Met., 1977, vol. 11, p. 181.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liaw, P.K., Hudak, S.J. & Donald, J.K. Influence of gaseous environments on rates of near-threshold fatigue crack propagation in nicrmov steel. Metall Trans A 13, 1633–1645 (1982). https://doi.org/10.1007/BF02644804

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644804

Keywords

Navigation