Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Continuous newton’s method for polynomials

  • Article
  • Published:
The Mathematical Intelligencer Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J.M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations,Nonlinear Sci. 7 (1997), 475–502.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. von Haeseler and H. Kriete, The relaxed Newton’s method for rational functions.Random Computat. Dynam. 3 (1995), 71–92.

    MATH  Google Scholar 

  3. H. Jongen, P. Jonker, and F. Twilt, The continuous, desingularized Newton method for meromorphic functions,Acta Appl. Math. 13 (1988), 81–121.

    Article  MATH  MathSciNet  Google Scholar 

  4. J.W. Neuberger,Sobolev Gradients and Differential Equations, Springer Lecture Notes in Mathematics Vol. 1670, Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  5. H. Peitgen, M. Prufer, and K. Schmitt, Global aspects of the continuous and discrete Newton method: A case study,Acta Appl. Math. 13 (1988), 123–202.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Saupe, Discrete versus continuous Newton’s method: A case study,Acta Appl. Math. 13(1988), 59–80.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Neuberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuberger, J.W. Continuous newton’s method for polynomials. The Mathematical Intelligencer 21, 18–23 (1999). https://doi.org/10.1007/BF03025411

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03025411

Keywords

Navigation