Abstract
Newton's method has recently become one of the paradigms in the revival of Julia set theory and complex dynamical systems. This paper, to a large extent experimental in nature, investigates Newton's method for some particular model problems as a real dynamical system of several simultaneous equations guided by the Julia set theory.
Similar content being viewed by others
References
E. Allgower and K. Georg, Simplicial and continuation methods for approximating fixed points and solutions to systems of equations, SIAM Review 22 (1985), 28–85
P. Barna, Über das Newtonsche Verfahrung zur Annäherung von Wurzeln algebraischer Gleichungen, Publ. Math. Debrecen 2 (1951), 50–63
P. Barna, Über die Divergenzpunkte des Newtonschen Verfahrens zur Bestimmung von Wurzeln algebraischer Gleichungen, I. Publ. Math. Debrecen 3 (1953), 109–118, II. ibid. 4 (1956), 384–397, III. ibid. 8 (1961), 193–207
P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc., 11 (1984), 85–141
F. Branin, A widely convergent method for finding multiple solutions of simultaneous nonlinear equations, IBM J. Res. Devlop. (1972), 504–522
H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103–144
A. Cayley, Desiderata and suggestions. No. 3.-the Newton-Fourier imaginary problem, Amer. J. Math. 2 (1879), 97
A. Cayley, Application of the Newton-Fourier method to an imaginary root of an equation, Quart. J. Pure Appl. Math. 16 (1879), 179–185
P. Collet and P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhäuser, Basel, Boston, 1980
J. Curry, L. Garnett and D. Sullivan, On the iteration of a rational function: computer experiments with Newton's method, Comm. Math. Phys. 91 (1983), 267–277
R. L. Devaney, Julia sets bifurcation diagrams for exponential maps, Bull. Amer. Math. Soc. 11 (1984), 167–171
R. L. Devaney, Exploding Julia sets, Proc. Conf. Chaotic Dynamics, Georgia Tech., 1985
K. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, Cambridge, 1985
P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math., France 47 (1919), 161–127; 48 (1920), 33–94, 208–314
C. Grebogi, E. Ott and J. Yorke, Crises, sudden changes in chaotic atrractors and transient chaos, pp. 181–200 in: Order in Chaos, D. Campbell and H. Rose, editors, North-Holland, Amsterdam, 1984
F. v. Haeseler, Über sofortige Attraktionsgebiete superattraktiver Zyklen, Dissertation, University of Bremen, 1985
F. v. Haeseler, H.-O. Peitgen, Newton's Method and Complex Dynamical systems, Acta. Appl. Mach. 13 (1988), this issue
P. Hartmann, Ordinary Differential Equations, J. Wiley, New York, 1964
E. Hille, Analytic Function Theory, vol. 2, Ginn and Co., Boston, 1962
M. Hirsch and S. Smale, Algorthims for solving f(x)=0, Comm. Pure Appl. Math. 32 (1979), 281–312
H. Jongen, P. Jonker and F. Twilt, The continuous Newton method for meromorphic functions, Springer Lecture Notes in Math. 810 (1980), 181–239
G. Julia, Memoire sur l'itération des fonction rationelles, J. Math. Pures et Appl. 81 (1918), 47–235
R. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco, 1982
R. Mane, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sc. Ec. Norm. Sup. 161 (1983), 193–217
S. W. McDonald, C. Grebogi, E. Ott and J. Yorke, Fractal basin boundaries, University of Maryland, preprint, 1985
H.-O. Peitgen and P. Richter, The Beauty of Fractals, Springer-Verlag, Berlin, New York, 1986
H.-O. Peitgen, D. Saupe, and F. v. Haeseler, Cayley's problem and Julia sets, Math. Intell. 6 (1984), 11–20, Newton's method and Julia sets, GMD-Studien Nr. 97, 1985
M. Prüfer, Turbulence in multistep methods for initial value problems, SIAM J. Appl. Math. 45 (1985), 32–69
P. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mtn. J. Math. 3 (1973), 162–202
D. Saupe, Discrete versus continuous Newton's method: A case study, Acta. Appl. Math. 13 (1988), this issue
S. Smale, A convergent process of price adjustment and global Newton methods, J. Math. Econ. 3 (1976), 107–120
S. Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. 4 (19815), 1–36
D. Sullivan, Quasi conformal homeomorphisms and dynamics, I, II, III, preprints, 1982–1983
S. Ushiki, H.-O. Peitgen, and F. v. Haeseler, Hyperbolic components of rational fractions λ(z+1/z), Proc. Conf. Theory of Dynamical Systems and Applications to Nonlinear Problems, H. Kawakami, ed., World Scientific, Singapore, 1984
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Peitgen, H.O., Prüfer, M. & Schmitt, K. Global aspects of the continuous and discrete Newton method: A case study. Acta Appl Math 13, 123–202 (1988). https://doi.org/10.1007/BF00047504
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00047504