Discrete Mathematics & Theoretical Computer Science |
Cover-Incomparability graphs (C-I graphs) are an interesting class of graphs from posets. A C-I graph is a graph from a poset $P=(V,\le)$ with vertex set $V$, and the edge-set is the union of edge sets of the cover graph and the incomparability graph of the poset. The recognition of the C-I graphs is known to be NP-complete (Maxov\'{a} et al., Order 26(3), 229--236(2009)). In this paper, we prove that chordal graphs having at most two independent simplicial vertices are exactly the chordal graphs which are also C-I graphs. A similar result is obtained for cographs as well. Using the structural results of these graphs, we derive linear time recognition algorithms for chordal graphs and cographs which are C-I graphs.
Lopsp-operations are operations on maps that are applied locally and are guaranteed to preserve all the orientation-preserving symmetries of maps. Well-known examples of such operations are dual, ambo, truncation, and leapfrog. They are described by plane 3-coloured triangulations with specific properties. We developed and implemented a program that can generate all lopsp-operations of a given size by reducing the problem of generating lopsp-operations to generating all plane quadrangulations that are not necessarily simple. We extended the program plantri to generate these quadrangulations.
A subset $S$ of vertices in a graph $G=(V, E)$ is a Dominating Set if each vertex in $V(G)\setminus S$ is adjacent to at least one vertex in $S$. Chellali et al. in 2013, by restricting the number of neighbors in $S$ of a vertex outside $S$, introduced the concept of $[1,j]$-dominating set. A set $D \subseteq V$ of a graph $G = (V, E)$ is called a $[1,j]$-Dominating Set of $G$ if every vertex not in $D$ has at least one neighbor and at most $j$ neighbors in $D$. The Minimum $[1,j]$-Domination problem is the problem of finding the minimum $[1,j]$-dominating set $D$. Given a positive integer $k$ and a graph $G = (V, E)$, the $[1,j]$-Domination Decision problem is to decide whether $G$ has a $[1,j]$-dominating set of cardinality at most $k$. A polynomial-time algorithm was obtained in split graphs for a constant $j$ in contrast to the Dominating Set problem which is NP-hard for split graphs. This result motivates us to investigate the effect of restriction $j$ on the complexity of $[1,j]$-domination problem on various classes of graphs. Although for $j\geq 3$, it has been proved that the minimum of classical domination is equal to minimum $[1,j]$-domination in interval graphs, the complexity of finding the minimum $[1,2]$-domination in interval graphs is still outstanding. In this paper, we propose a polynomial-time algorithm for computing a minimum $[1,2]$-dominating set on interval graphs by a dynamic programming technique. Next, on the negative side, we show that the minimum […]
In this work, we study the Biclique-Free Vertex Deletion problem: Given a graph $G$ and integers $k$ and $i \le j$, find a set of at most $k$ vertices that intersects every (not necessarily induced) biclique $K_{i, j}$ in $G$. This is a natural generalization of the Bounded-Degree Deletion problem, wherein one asks whether there is a set of at most $k$ vertices whose deletion results in a graph of a given maximum degree $r$. The two problems coincide when $i = 1$ and $j = r + 1$. We show that Biclique-Free Vertex Deletion is fixed-parameter tractable with respect to $k + d$ for the degeneracy $d$ by developing a $2^{O(d k^2)} \cdot n^{O(1)}$-time algorithm. We also show that it can be solved in $2^{O(f k)} \cdot n^{O(1)}$ time for the feedback vertex number $f$ when $i \ge 2$. In contrast, we find that it is W[1]-hard for the treedepth for any integer $i \ge 1$. Finally, we show that Biclique-Free Vertex Deletion has a polynomial kernel for every $i \ge 1$ when parameterized by the feedback edge number. Previously, for this parameter, its fixed-parameter tractability for $i = 1$ was known (Betzler et al., 2012) but the existence of polynomial kernel was open.
Complete non-ambiguous trees (CNATs) are combinatorial objects which appear in various contexts.Recently, Chen and Ohlig studied the notion of permutations associated to these objects, and proposed a series of nice conjectures.Most of them were proved by Selig and Zhu, through a connection with the abelian sandpile model.But one conjecture remained open, about the distribution of a natural statistic named determinant.We prove this conjecture, in a bijective way.