Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

AceCoder: An Effective Prompting Technique Specialized in Code Generation

Published: 21 November 2024 Publication History

Abstract

Large language models (LLMs) have shown great success in code generation. LLMs take as the input a prompt and output the code. How to make prompts (i.e., Prompting Techniques) is a key question. Existing prompting techniques are designed for natural language generation and have low accuracy in code generation.
In this article, we propose a new prompting technique named AceCoder. Our motivation is that code generation meets two unique challenges (i.e., requirement understanding and code implementation). AceCoder contains two novel mechanisms (i.e., guided code generation and example retrieval) to solve these challenges. ❶ Guided code generation asks LLMs first to analyze requirements and output an intermediate preliminary (e.g., test cases). The preliminary clarifies requirements and tells LLMs “what to write.” ❷ Example retrieval selects similar programs as examples in prompts, which provide lots of relevant content (e.g., algorithms, APIs) and teach LLMs “how to write.” We apply AceCoder to four LLMs (e.g., GPT-3.5, CodeGeeX) and evaluate it on three public benchmarks using the Pass@\(k\). Results show that AceCoder can significantly improve the performance of LLMs on code generation. In terms of Pass@1, AceCoder outperforms the SOTA baseline by up to 56.4% in MBPP, 70.7% in MBJP, and 88.4% in MBJSP. AceCoder is effective in LLMs with different sizes (i.e., 6B–13B) and different languages (i.e., Python, Java, and JavaScript). Human evaluation shows human developers prefer programs from AceCoder.

References

[2]
2022. GitHub. Retrieved from https://github.com/
[3]
2022. Lucene. Retrieved from https://lucene.apache.org/
[5]
Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Unified Pre-Training for Program Understanding and Generation. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT ’21). Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (Eds.). Association for Computational Linguistics, 2655–2668. DOI:
[6]
Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng Qian, Murali Krishna Ramanathan, and Ramesh Nallapati. 2023. Multi-lingual Evaluation of Code Generation Models. In Proceedings of the 11th International Conference on Learning Representations (ICLR ’23). OpenReview.net. Retrieved from https://openreview.net/pdf?id=Bo7eeXm6An8
[7]
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. 2021. Program Synthesis with Large Language Models. arXiv:2108.07732. Retrieved from https://arxiv.org/abs/2108.07732
[8]
Kent L. Beck. 2003. Test-Driven Development - By Example. Addison-Wesley.
[9]
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Proceedings of the Advances in Neural Information Processing Systems, Vol. 33. 1877–1901.
[10]
Sahil Chaudhary. 2023. Code Alpaca: An Instruction-Following LLaMA Model for Code Generation. Retrieved from https://github.com/sahil280114/codealpaca
[11]
Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023. CodeT: Code Generation with Generated Tests. In Proceedings of the 11th International Conference on Learning Representations (ICLR ’23). OpenReview.net. Retrieved from https://openreview.net/pdf?id=ktrw68Cmu9c
[12]
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large Language Models Trained on Code. arXiv:2107.03374. Retrieved from https://arxiv.org/abs/2107.03374
[13]
Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih, Luke Zettlemoyer, and Mike Lewis. 2023. InCoder: A Generative Model for Code Infilling and Synthesis. In Proceedings of the 11th International Conference on Learning Representations (ICLR ’23). OpenReview.net. Retrieved from https://openreview.net/pdf?id=hQwb-lbM6EL
[14]
Yiyang Hao, Ge Li, Yongqiang Liu, Xiaowei Miao, He Zong, Siyuan Jiang, Yang Liu, and He Wei. 2022. AixBench: A Code Generation Benchmark Dataset. arXiv:2206.13179. Retrieved from https://arxiv.org/pdf/2206.13179
[15]
Tatsunori B. Hashimoto, Kelvin Guu, Yonatan Oren, and Percy Liang. 2018. A Retrieve-and-Edit Framework for Predicting Structured Outputs. In Proceedings of the Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018 (NeurIPS ’18). Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolo Cesa-Bianchi, and Roman Garnett (Eds.). 10073–10083. Retrieved from https://proceedings.neurips.cc/paper/2018/hash/cd17d3ce3b64f227987cd92cd701cc58-Abstract.html
[16]
Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. 2021. Measuring Coding Challenge Competence with APPS. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021. Joaquin Vanschoren and Sai-Kit Yeung (Eds.). Retrieved from https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
[17]
Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The Curious Case of Neural Text Degeneration. In Proceedings of the 8th International Conference on Learning Representations (ICLR ’20). OpenReview.net. Retrieved from https://openreview.net/forum?id=rygGQyrFvH
[18]
Jeevana Priya Inala, Chenglong Wang, Mei Yang, Andrés Codas, Mark Encarnación, Shuvendu K. Lahiri, Madanlal Musuvathi, and Jianfeng Gao. 2022. Fault-Aware Neural Code Rankers. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS). 13419–13432. Retrieved from http://papers.nips.cc/paper_files/paper/2022/hash/5762c579d09811b7639be2389b3d07be-Abstract-Conference.html
[19]
Naman Jain, Skanda Vaidyanath, Arun Shankar Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram K. Rajamani, and Rahul Sharma. 2022. Jigsaw: Large Language Models Meet Program Synthesis. In Proceedings of the 44th IEEE/ACM 44th International Conference on Software Engineering (ICSE ’22). ACM, New York, NY, 1219–1231. DOI:
[20]
Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. 2024a. EvoCodeBench: An Evolving Code Generation Benchmark Aligned with Real-World Code Repositories. arXiv:2404.00599. Retrieved from https://arxiv.org/pdf/2404.00599
[21]
Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Huanyu Liu, Hao Zhu, Lecheng Wang, Kaibo Liu, Zheng Fang, Lanshen Wang, Jiazheng Ding, Xuanming Zhang, Yuqi Zhu, Yihong Dong, Zhi Jin, Binhua Li, Fei Huang, and Yongbin Li. 2024b. DevEval: A Manually-Annotated Code Generation Benchmark Aligned with Real-World Code Repositories. arXiv:2405.19856. Retrieved from https://arxiv.org/pdf/2405.19856
[22]
Jia Li, Yongmin Li, Ge Li, Xing Hu, Xin Xia, and Zhi Jin. 2021. EditSum: A Retrieve-and-Edit Framework for Source Code Summarization. In Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering (ASE ’21). IEEE, 155–166. DOI:
[23]
Jia Li, Yongmin Li, Ge Li, Zhi Jin, Yiyang Hao, and Xing Hu. 2023b. SkCoder: A Sketch-Based Approach for Automatic Code Generation. In Proceedings of the 45th IEEE/ACM International Conference on Software Engineering (ICSE ’23). IEEE, 2124–2135. DOI:
[24]
Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. 2023a. StarCoder: May the Source be With You! arXiv:2305.06161. Retrieved from https://arxiv.org/pdf/2305.06161
[25]
Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-Level Code Generation with AlphaCode. Science 378, 6624 (2022), 1092–1097. DOI:. Retrieved from https://www.science.org/doi/pdf/10.1126/science.abq1158
[26]
C. Y. Lin. 2004. Rouge: A Package for Automatic Evaluation of Summaries. In Text Summarization Branches Out: Proceedings of the ACL-04 Workshop. 74–81.
[27]
Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey Svyatkovskiy. 2022. ReACC: A Retrieval-Augmented Code Completion Framework. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (ACL ’22). Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (Eds.). Association for Computational Linguistics, 6227–6240. DOI:
[28]
Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. 2023. WizardCoder: Empowering Code Large Language Models with Evol-Instruct. arXiv:2306.08568. Retrieved from https://arxiv.org/pdf/2306.08568
[29]
Audris Mockus. 2007. Large-Scale Code Reuse in Open Source Software. In Proceedings of the 1st International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS ’07: ICSE Workshops 2007). IEEE, 7–7.
[30]
Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong. 2023. CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis. In Proceedings of the 11th International Conference on Learning Representations (ICLR ’23). OpenReview.net. Retrieved from https://openreview.net/pdf?id=iaYcJKpY2B_
[31]
OpenAI. 2022. ChatGPT. Retrieved from https://openai.com/blog/chatgpt
[32]
OpenAI. 2023. gpt-3.5-turbo. Retrieved from https://platform.openai.com/docs/models/gpt-3-5
[33]
Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022. Training Language Models to Follow Instructions with Human Feedback. In Proceedings of the Advances in Neural Information Processing Systems, Vol. 35. 27730–27744.
[34]
Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: A Method for Automatic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. 311–318.
[35]
Md. Rizwan Parvez, Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Retrieval Augmented Code Generation and Summarization. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2021. Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.). Association for Computational Linguistics, 2719–2734. DOI:
[36]
Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving Language Understanding by Generative Pre-Training. Retrieved from https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
[37]
Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language Models Are Unsupervised Multitask Learners. OpenAI blog 1, 8 (2019), 9.
[38]
Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP ’19). Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (Eds.). Association for Computational Linguistics, 3980–3990. DOI:
[39]
Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Framework: BM25 and Beyond. Foundations and Trends® in Information Retrieval 3, 4 (2009), 333–389.
[40]
Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An Instruction-Following LLaMA Model. Retrieved from https://github.com/tatsu-lab/stanford_alpaca
[41]
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models. arXiv:2302.13971. Retrieved from https://arxiv.org/pdf/2302.13971
[42]
Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. 2023c. Self-Consistency Improves Chain of Thought Reasoning in Language Models. In Proceedings of the 11th International Conference on Learning Representations (ICLR ’23). OpenReview.net. Retrieved from https://openreview.net/pdf?id=1PL1NIMMrw
[43]
Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh Hajishirzi. 2023a. Self-Instruct: Aligning Language Models with Self-Generated Instructions. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics. 13484–13508. Retrieved from https://aclanthology.org/2023.acl-long.754
[44]
Yue Wang, Hung Le, Akhilesh Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H. Hoi. 2023b. CodeT5+: Open Code Large Language Models for Code Understanding and Generation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP ’23). Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics, 1069–1088. DOI:
[45]
Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H. Hoi. 2021. CodeT5: Identifier-Aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, 8696–8708. DOI:
[46]
Bolin Wei, Yongmin Li, Ge Li, Xin Xia, and Zhi Jin. 2020. Retrieve and Refine: Exemplar-Based Neural Comment Generation. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering (ASE ’20). IEEE, 349–360.
[47]
Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. 2022a. Finetuned Language Models are Zero-Shot Learners. In Proceedings of the International Conference on Learning Representations. Retrieved from https://openreview.net/forum?id=gEZrGCozdqR
[48]
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022b. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. In Proceedings of the Advances in Neural Information Processing Systems. 24824–24837.
[49]
Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin Jiang. 2023. WizardLM: Empowering Large Language Models to Follow Complex Instructions. arXiv:2304.12244. Retrieved from https://arxiv.org/pdf/2304.12244
[50]
Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate Before Use: Improving Few-Shot Performance of Language Models. In Proceedings of the International Conference on Machine Learning. PMLR, 12697–12706.
[51]
Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023. CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual Benchmarking on HumanEval-X. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’23). Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (Eds.). ACM, New York, NY, 5673–5684. DOI:
[52]
Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. 2023. Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. In Proceedings of the 11th International Conference on Learning Representations (ICLR ’23). OpenReview.net. Retrieved from https://openreview.net/pdf?id=WZH7099tgfM

Cited By

View all
  • (2024)Structured Chain-of-Thought Prompting for Code GenerationACM Transactions on Software Engineering and Methodology10.1145/3690635Online publication date: 29-Aug-2024
  • (2024)Learning to Detect and Localize Multilingual BugsProceedings of the ACM on Software Engineering10.1145/36608041:FSE(2190-2213)Online publication date: 12-Jul-2024
  • (2024)When to Stop? Towards Efficient Code Generation in LLMs with Excess Token PreventionProceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis10.1145/3650212.3680343(1073-1085)Online publication date: 11-Sep-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Software Engineering and Methodology
ACM Transactions on Software Engineering and Methodology  Volume 33, Issue 8
November 2024
300 pages
EISSN:1557-7392
DOI:10.1145/3613733
  • Editor:
  • Mauro Pezze
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 November 2024
Online AM: 04 July 2024
Accepted: 17 June 2024
Revised: 11 May 2024
Received: 22 October 2023
Published in TOSEM Volume 33, Issue 8

Check for updates

Author Tags

  1. Code generation
  2. large language models
  3. prompting engineering

Qualifiers

  • Research-article

Funding Sources

  • National Natural Science Foundation of China
  • National Key R & D Program
  • National Natural Science Foundation of China
  • Major Program (JD) of Hubei Province

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)808
  • Downloads (Last 6 weeks)209
Reflects downloads up to 19 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Structured Chain-of-Thought Prompting for Code GenerationACM Transactions on Software Engineering and Methodology10.1145/3690635Online publication date: 29-Aug-2024
  • (2024)Learning to Detect and Localize Multilingual BugsProceedings of the ACM on Software Engineering10.1145/36608041:FSE(2190-2213)Online publication date: 12-Jul-2024
  • (2024)When to Stop? Towards Efficient Code Generation in LLMs with Excess Token PreventionProceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis10.1145/3650212.3680343(1073-1085)Online publication date: 11-Sep-2024

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media