Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3447555.3466579acmotherconferencesArticle/Chapter ViewAbstractPublication Pagese-energyConference Proceedingsconference-collections
short-paper

AI Waste Prevention: Time and Power Estimation for Edge Tensor Processing Units: Poster

Published: 22 June 2021 Publication History

Abstract

Artificial Intelligence (AI) has changed our daily lives. The evolution from centralised cloud-hosted services towards embedded and mobile devices has shifted the focus from quality-related aspects towards the resource demand of machine learning. Its pervasiveness demands for "green" AI---both the development and the operation of AI models still include significant resource investments in terms of processing time and power demand. In order to prevent such AI Waste, this paper presents Precious, an approach, as well as practical implementation, that estimates execution time and power draw of neural networks (NNs) that execute on a commercially-available off-the-shelf accelerator hardware (i.e., Google Coral Edge TPU). The evaluation of our implementations shows that Precious accurately estimates time and power demand.

References

[1]
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learning. In Proc. OSDI'16. USENIX, 265--283.
[2]
S. Cass. 2019. Taking AI to the edge: Google's TPU now comes in a maker-friendly package. IEEE Spectrum 56, 5 (May 2019), 16--17.
[3]
S. Greengard. 2020. AI on Edge. CACM 63, 9 (Aug. 2020), 18--20.
[4]
Google LLC. 2020. Tensorflow Keras. https://www.tensorflow.org/versions/r2-0/api_docs/python/tf/keras. Acc. 2020-02-20.
[5]
Google LLC. 2020. USB Accelerator. https://www.coral.ai/products/accelerator. Acc. 2020-02-20.
[6]
S. S. L. Oskouei, H. Golestani, M. Hashemi, and S. Ghiasi. 2016. CNNdroid: GPU-Accelerated Execution of Trained Deep Convolutional Neural Networks on Android. In Proc. MM'16. ACM, 1201--1205.
[7]
S. Reif, B. Herzog, J. Hemp, T. Hönig, and W. Schröder-Preikschat. 2020. Precious: Resource-Demand Estimation for Embedded Neural Network Accelerators. In Proc. Challenge'20.
[8]
R. Schwartz, J. Dodge, N. Smith, and O. Etzioni. 2020. Green AI. CACM 63, 12 (Nov. 2020), 54--63.
[9]
M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu. 2019. A First Look at Deep Learning Apps on Smartphones. In Proc. WWW'19. ACM, 2125--2136.

Cited By

View all
  • (2022)Resource-demand Estimation for Edge Tensor Processing UnitsACM Transactions on Embedded Computing Systems10.1145/352013221:5(1-24)Online publication date: 8-Oct-2022
  • (2022)Ausführungszeit und Stromverbrauch von Inferenzen künstlicher neuronaler Netze auf einem TensorprozessorEchtzeit 202110.1007/978-3-658-37751-9_3(13-24)Online publication date: 25-May-2022

Index Terms

  1. AI Waste Prevention: Time and Power Estimation for Edge Tensor Processing Units: Poster

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      e-Energy '21: Proceedings of the Twelfth ACM International Conference on Future Energy Systems
      June 2021
      528 pages
      ISBN:9781450383332
      DOI:10.1145/3447555
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 22 June 2021

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Green AI
      2. Neural Network Accelerators
      3. Resource Awareness

      Qualifiers

      • Short-paper
      • Research
      • Refereed limited

      Conference

      e-Energy '21

      Acceptance Rates

      Overall Acceptance Rate 160 of 446 submissions, 36%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)19
      • Downloads (Last 6 weeks)6
      Reflects downloads up to 22 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)Resource-demand Estimation for Edge Tensor Processing UnitsACM Transactions on Embedded Computing Systems10.1145/352013221:5(1-24)Online publication date: 8-Oct-2022
      • (2022)Ausführungszeit und Stromverbrauch von Inferenzen künstlicher neuronaler Netze auf einem TensorprozessorEchtzeit 202110.1007/978-3-658-37751-9_3(13-24)Online publication date: 25-May-2022

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media