Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2723372.2723726acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Squall: Fine-Grained Live Reconfiguration for Partitioned Main Memory Databases

Published: 27 May 2015 Publication History

Abstract

For data-intensive applications with many concurrent users, modern distributed main memory database management systems (DBMS) provide the necessary scale-out support beyond what is possible with single-node systems. These DBMSs are optimized for the short-lived transactions that are common in on-line transaction processing (OLTP) workloads. One way that they achieve this is to partition the database into disjoint subsets and use a single-threaded transaction manager per partition that executes transactions one-at-a-time in serial order. This minimizes the overhead of concurrency control mechanisms, but requires careful partitioning to limit distributed transactions that span multiple partitions. Previous methods used off-line analysis to determine how to partition data, but the dynamic nature of these applications means that they are prone to hotspots. In these situations, the DBMS needs to reconfigure how data is partitioned in real-time to maintain performance objectives. Bringing the system off-line to reorganize the database is unacceptable for on-line applications.
To overcome this problem, we introduce the Squall technique for supporting live reconfiguration in partitioned, main memory DBMSs. Squall supports fine-grained repartitioning of databases in the presence of distributed transactions, high throughput client workloads, and replicated data. An evaluation of our approach on a distributed DBMS shows that Squall can reconfigure a database with no downtime and minimal overhead on transaction latency.

References

[1]
H-Store. http://hstore.cs.brown.edu.
[2]
MemSQL. http://www.memsql.com.
[3]
MongoDB. http://mongodb.org.
[4]
NuoDB. http://www.nuodb.com.
[5]
VMware vFabric SQLFire. http://www.vmware.com/go/sqlfire.
[6]
VoltDB. http://www.voltdb.com.
[7]
M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing. Commun. ACM, 53(4):50--58, Apr. 2010.
[8]
S. K. Barker, Y. Chi, H. J. Moon, H. Hacigümüs, and P. J. Shenoy. "Cut me some slack": latency-aware live migration for databases. In EDBT, pages 432--443, 2012.
[9]
P. A. Bernstein and N. Goodman. Timestamp-based algorithms for concurrency control in distributed database systems. In VLDB, pages 285--300, 1980.
[10]
R. Cattell. Scalable sql and nosql data stores. SIGMOD Rec., 39:12--27, 2011.
[11]
C. Clark et al. Live migration of virtual machines. In NSDI, pages 273--286, 2005.
[12]
B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking Cloud Serving Systems with YCSB. In SoCC, pages 143--154, 2010.
[13]
J. Cowling and B. Liskov. Granola: low-overhead distributed transaction coordination. In USENIX ATC, pages 21--34, June 2012.
[14]
C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden. Schism: a workload-driven approach to database replication and partitioning. PVLDB, 3(1):48--57, 2010.
[15]
S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi. Albatross: Lightweight Elasticity in Shared Storage Databases for the Cloud using Live Data Migration. PVLDB, 4(8):494--505, May 2011.
[16]
D. DeWitt and J. Gray. Parallel database systems: the future of high performance database systems. Commun. ACM, 35(6):85--98, 1992.
[17]
C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: Sql server's memory-optimized oltp engine. In SIGMOD, pages 1243--1254, 2013.
[18]
A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Towards an elastic and autonomic multitenant database. NetDB, 2011.
[19]
A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr: Live Migration in Shared Nothing Databases for Elastic Cloud Platforms. In SIGMOD, pages 301--312, 2011.
[20]
N. Folkman. So, that was a bummer. https://web.archive.org/web/20101104120513/http://blog.foursquare.com/2010/10/05/so-that-was-a-bummer/, October 2010.
[21]
T. Haerder and A. Reuter. Principles of transaction-oriented database recovery. ACM Comput. Surv., 15(4):287--317, Dec. 1983.
[22]
S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. OLTP through the looking glass, and what we found there. In SIGMOD, pages 981--992, 2008.
[23]
E. P. Jones. Fault-Tolerant Distributed Transactions for Partitioned OLTP Databases. PhD thesis, MIT, 2011.
[24]
R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. B. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. H-store: a high-performance, distributed main memory transaction processing system. PVLDB, 1(2):1496--1499, 2008.
[25]
K. Li and J. F. Naughton. Multiprocessor main memory transaction processing. DPDS, pages 177--187, 1988.
[26]
D. B. Lomet, S. Sengupta, and J. J. Levandoski. The bw-tree: A b-tree for new hardware platforms. In ICDE, pages 302--313, 2013.
[27]
N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking main memory oltp recovery. In Data Engineering (ICDE), 2014 IEEE 30th International Conference on, pages 604--615, March 2014.
[28]
U. F. Minhas, R. Liu, A. Aboulnaga, K. Salem, J. Ng, and S. Robertson. Elastic scale-out for partition-based database systems. In ICDE Workshops, pages 281--288, 2012.
[29]
C. N. Nikolaou, M. Marazakis, and G. Georgiannakis. Transaction routing for distributed OLTP systems: survey and recent results. Inf. Sci., 97:45--82, 1997.
[30]
NuoDB LLC. NuoDB Emergent Architecture -- A 21st Century Transactional Relational Database Founded On Partial, On-Demand Replication, Jan. 2013.
[31]
I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki. Plp: Page latch-free shared-everything oltp. In PVLDB, volume 4, pages 610--621, 2011.
[32]
A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic database partitioning in shared-nothing, parallel OLTP systems. In SIGMOD, pages 61--72, 2012.
[33]
A. Pavlo, E. P. Jones, and S. Zdonik. On predictive modeling for optimizing transaction execution in parallel oltp systems. Proc. VLDB Endow., 5:85--96, October 2011.
[34]
T. Rafiq. Elasca: Workload-aware elastic scalability for partition based database systems. Master's thesis, University of Waterloo, 2013.
[35]
O. Schiller, N. Cipriani, and B. Mitschang. Prorea: live database migration for multi-tenant rdbms with snapshot isolation. In EDBT, pages 53--64, 2013.
[36]
R. Stoica, J. J. Levandoski, and P.-A. Larson. Identifying hot and cold data in main-memory databases. In ICDE, pages 26--37, 2013.
[37]
M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland. The End of an Architectural Era (It's Time for a Complete Rewrite). In VLDB, pages 1150--1160, 2007.
[38]
R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga, A. Pavlo, and M. Stonebraker. E-store: Fine-grained elastic partitioning for distributed transaction processing. Proc. VLDB Endow., 8:245--256, November 2014.
[39]
The Transaction Processing Performance Council. TPC-C benchmark (Version 5.10.1), 2009.
[40]
S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions in multicore in-memory databases. In SOSP, pages 18--32, 2013.
[41]
A. Whitney, D. Shasha, and S. Apter. High Volume Transaction Processing Without Concurrency Control, Two Phase Commit, SQL or C
[42]
. In HPTS, 1997.

Cited By

View all
  • (2024)The optimization problem of system load balancing and its solution for industrial Internet-of-Things data managementSCIENTIA SINICA Informationis10.1360/SSI-2023-0211Online publication date: 30-Sep-2024
  • (2024)Locality-Preserving Graph Traversal With Split Live MigrationIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2024.343682835:10(1810-1825)Online publication date: Oct-2024
  • (2024)Lion: Minimizing Distributed Transactions Through Adaptive Replica Provision2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00161(2012-2025)Online publication date: 13-May-2024
  • Show More Cited By

Index Terms

  1. Squall: Fine-Grained Live Reconfiguration for Partitioned Main Memory Databases

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGMOD '15: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data
    May 2015
    2110 pages
    ISBN:9781450327589
    DOI:10.1145/2723372
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 May 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. load-balancing
    2. migration
    3. reconfiguration

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    SIGMOD/PODS'15
    Sponsor:
    SIGMOD/PODS'15: International Conference on Management of Data
    May 31 - June 4, 2015
    Victoria, Melbourne, Australia

    Acceptance Rates

    SIGMOD '15 Paper Acceptance Rate 106 of 415 submissions, 26%;
    Overall Acceptance Rate 785 of 4,003 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)44
    • Downloads (Last 6 weeks)5
    Reflects downloads up to 14 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)The optimization problem of system load balancing and its solution for industrial Internet-of-Things data managementSCIENTIA SINICA Informationis10.1360/SSI-2023-0211Online publication date: 30-Sep-2024
    • (2024)Locality-Preserving Graph Traversal With Split Live MigrationIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2024.343682835:10(1810-1825)Online publication date: Oct-2024
    • (2024)Lion: Minimizing Distributed Transactions Through Adaptive Replica Provision2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00161(2012-2025)Online publication date: 13-May-2024
    • (2023)GriDB: Scaling Blockchain Database via Sharding and Off-Chain Cross-Shard MechanismProceedings of the VLDB Endowment10.14778/3587136.358714316:7(1685-1698)Online publication date: 1-Mar-2023
    • (2023)Efficient Distributed Transaction Processing in Heterogeneous NetworksProceedings of the VLDB Endowment10.14778/3583140.358315316:6(1372-1385)Online publication date: 20-Apr-2023
    • (2023)LB-Chain: Load-Balanced and Low-Latency Blockchain Sharding via Account MigrationIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2023.323834334:10(2797-2810)Online publication date: Oct-2023
    • (2023)EfShard: Toward Efficient State Sharding Blockchain via Flexible and Timely State AllocationIEEE Transactions on Network and Service Management10.1109/TNSM.2023.323643320:3(2817-2829)Online publication date: Sep-2023
    • (2023)Survey on performance optimization for database systemsScience China Information Sciences10.1007/s11432-021-3578-666:2Online publication date: 11-Jan-2023
    • (2023)RCBench: an RDMA-enabled transaction framework for analyzing concurrency control algorithmsThe VLDB Journal10.1007/s00778-023-00821-033:2(543-567)Online publication date: 14-Dec-2023
    • (2022)DINOMOProceedings of the VLDB Endowment10.14778/3565838.356585415:13(4023-4037)Online publication date: 1-Sep-2022
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media