Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Algorithm 943: MSS: MATLAB Software for L-BFGS Trust-Region Subproblems for Large-Scale Optimization

Published: 08 July 2014 Publication History

Abstract

A MATLAB implementation of the Moré-Sorensen sequential (MSS) method is presented. The MSS method computes the minimizer of a quadratic function defined by a limited-memory BFGS matrix subject to a two-norm trust-region constraint. This solver is an adaptation of the Moré-Sorensen direct method into an L-BFGS setting for large-scale optimization. The MSS method makes use of a recently proposed stable fast direct method for solving large shifted BFGS systems of equations [Erway and Marcia 2012; Erway et al. 2012] and is able to compute solutions to any user-defined accuracy. This MATLAB implementation is a matrix-free iterative method for large-scale optimization. Numerical experiments on the CUTEr [Bongartz et al. 1995; Gould et al. 2003]) suggest that using the MSS method as a trust-region subproblem solver can require significantly fewer function and gradient evaluations needed by a trust-region method as compared with the Steihaug-Toint method.

Supplementary Material

ZIP File (943.zip)
Software for MSS: MATLAB Software for L-BFGS Trust-Region Subproblems for Large-Scale Optimization

References

[1]
M. S. Apostolopoulou, D. G. Sotiropoulos, C. A. Botsaris, and P. E. Pintelas. 2011. A practical method for solving large-scale TRS. Optimiz. Lett. 5, 2, 207--227.
[2]
M. S. Apostolopoulou, D. G. Sotiropoulos, and P. Pintelas. 2008. Solving the quadratic trust-region subproblem in a low-memory BFGS framework. Optimiz. Meth. Softw. 23, 5, 651--674. org/10.1080/10556780802413579
[3]
I. Bongartz, A. R. Conn, N. I. M. Gould, and Philippe L. Toint. 1995. CUTE: Constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21, 1, 123--160.
[4]
J. V. Burke, A. Wiegmann, and L. Xu. 2008. Limited Memory BFGS Updating in a Trust-Region Framework. Tech. Rep. Univ. Washington.
[5]
R. H. Byrd, J. Nocedal, and R. B. Schnabel. 1994. Representations of quasi-Newton matrices and their use in limited-memory methods. Math. Program. 63, 129--156.
[6]
A. R. Conn, N. I. M. Gould, and P. L. Toint. 2000. Trust-Region Methods. SIAM, Philadelphia, PA. xx+959 pages.
[7]
J. E. Dennis, Jr. and Robert B. Schnabel. 1996. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia, PA. xvi+378 pages. (Corrected reprint of the 1983 original).
[8]
J. E. Dennis, Jr. and H. H. Mei. 1979. Two new unconstrained optimization algorithms which use function and gradient values. J. Optim. Theory Appl. 28, 453--482.
[9]
E. D. Dolan and J. J. Moré. 2002. Benchmarking optimization software with performance profiles. Math. Program. 91, 2, Ser. A, 201--213.
[10]
J. B. Erway and P. E. Gill. 2009. A subspace minimization method for the trust-region step. SIAM J. Optimiz. 20, 3, 1439--1461.
[11]
J. B. Erway, P. E. Gill, and J. D. Griffin. 2009. Iterative methods for finding a trust-region step. SIAM J. Optim. 20, 2, 1110--1131.
[12]
J. B. Erway, V. Jain, and R. F. Marcia. 2012. Shifted L-BFGS systems. Tech. Rep. 2012-6. Wake Forest Univ.
[13]
J. B. Erway and R. F. Marcia. 2012. Limited-memory BFGS systems with diagonal updates. Linear Algebra Appl. 437, 1, 333--344.
[14]
D. M. Gay. 1981. Computing optimal locally constrained steps. SIAM J. Sci. Statist. Comput. 2, 2, 186--197.
[15]
N. I. M. Gould, S. Lucidi, M. Roma, and P. L. Toint. 1999. Solving the trust-region subproblem using the Lanczos method. SIAM J. Optim. 9, 2, 504--525.
[16]
N. I. M. Gould, D. Orban, and P. L. Toint. 2003. CUTEr and SifDec: A constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29, 4, 373--394.
[17]
D. C. Liu and J. Nocedal. 1989. On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503--528.
[18]
Z. Lu and R. D. C. Monteiro. 2007. A modified nearly exact method for solving low-rank trust region subproblem. Math. Program. 109, 2, 385--411.
[19]
J. J. Moré and D. C. Sorensen. 1983. Computing a trust region step. SIAM J. Sci. Statist. Comput. 4, 553--572.
[20]
J. Nocedal. 1980. Updating quasi-Newton matrices with limited storage. Math. Comput. 35, 773--782.
[21]
J. Nocedal and S. J. Wright. 2006. Numerical Optimization 2nd Ed. Springer-Verlag, New York.
[22]
M. J. D. Powell. 1970a. A Fortran subroutine for solving systems of nonlinear algebraic equations. In Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, Ed., Gordon and Breach Science Publishers, London, UK, 115--161.
[23]
M. J. D. Powell. 1970b. A hybrid method for nonlinear equations. In Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, Ed., Gordon and Breach Science Publishers, London, UK, 87--114.
[24]
D. C. Sorensen. 1982. Newton's method with a model trust region modification. SIAM J. Numer. Anal. 19, 2, 409--426.
[25]
Y.-X. Yuan. 2000. On the truncated conjugate gradient method. Math. Program. 87, 3, Ser. A, 561--573.

Cited By

View all
  • (2024)Shape-changing trust-region methods using multipoint symmetric secant matricesOptimization Methods and Software10.1080/10556788.2023.2296441(1-18)Online publication date: 24-Jan-2024
  • (2023)Algorithm 1033: Parallel Implementations for Computing the Minimum Distance of a Random Linear Code on Distributed-memory ArchitecturesACM Transactions on Mathematical Software10.1145/357338349:1(1-24)Online publication date: 21-Mar-2023
  • (2023)Algorithm 1029: Encapsulated Error, a Direct Approach to Evaluate Floating-Point AccuracyACM Transactions on Mathematical Software10.1145/354920548:4(1-16)Online publication date: 22-Mar-2023
  • Show More Cited By

Index Terms

  1. Algorithm 943: MSS: MATLAB Software for L-BFGS Trust-Region Subproblems for Large-Scale Optimization

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Mathematical Software
    ACM Transactions on Mathematical Software  Volume 40, Issue 4
    June 2014
    154 pages
    ISSN:0098-3500
    EISSN:1557-7295
    DOI:10.1145/2639949
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 08 July 2014
    Accepted: 01 November 2013
    Revised: 01 July 2013
    Received: 01 December 2012
    Published in TOMS Volume 40, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Badges

    Author Tags

    1. L-BFGS
    2. Large-scale unconstrained optimization
    3. limited-memory quasi-Newton methods
    4. trust-region methods

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)19
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 21 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Shape-changing trust-region methods using multipoint symmetric secant matricesOptimization Methods and Software10.1080/10556788.2023.2296441(1-18)Online publication date: 24-Jan-2024
    • (2023)Algorithm 1033: Parallel Implementations for Computing the Minimum Distance of a Random Linear Code on Distributed-memory ArchitecturesACM Transactions on Mathematical Software10.1145/357338349:1(1-24)Online publication date: 21-Mar-2023
    • (2023)Algorithm 1029: Encapsulated Error, a Direct Approach to Evaluate Floating-Point AccuracyACM Transactions on Mathematical Software10.1145/354920548:4(1-16)Online publication date: 22-Mar-2023
    • (2023)A new multipoint symmetric secant method with a dense initial matrixOptimization Methods and Software10.1080/10556788.2023.216799338:4(698-722)Online publication date: 6-Feb-2023
    • (2022)Algorithm 1030: SC-SR1: MATLAB Software for Limited-memory SR1 Trust-region MethodsACM Transactions on Mathematical Software10.1145/355026948:4(1-33)Online publication date: 19-Dec-2022
    • (2019)Large-scale quasi-Newton trust-region methods with low-dimensional linear equality constraintsComputational Optimization and Applications10.1007/s10589-019-00127-4Online publication date: 5-Sep-2019
    • (2017)On solving L-SR1 trust-region subproblemsComputational Optimization and Applications10.1007/s10589-016-9868-366:2(245-266)Online publication date: 1-Mar-2017
    • (2016)On efficiently combining limited-memory and trust-region techniquesMathematical Programming Computation10.1007/s12532-016-0109-79:1(101-134)Online publication date: 27-Jun-2016
    • (2015)Fully relativistic complete active space self-consistent field for large molecules: Quasi-second-order minimax optimizationThe Journal of Chemical Physics10.1063/1.4906344142:4Online publication date: 27-Jan-2015

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media