Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/1542362.1542399acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

The Euclidean degree-4 minimum spanning tree problem is NP-hard

Published: 08 June 2009 Publication History

Abstract

We show that it is an NP-hard problem to decide for a given set P of n points in the Euclidean plane and a given parameter k∈R, whether P admits a spanning tree of maximum vertex degree four whose sum of edge lengths does not exceed k.

References

[1]
S. Arora. Polynomial time approximation schemes for Euclidean TSP and other geometric problems. In Proc. 37th Annu. IEEE Sympos. Found. Comput. Sci., pages 2--11, 1996.
[2]
S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM, 45(5):753--782, 1998.
[3]
S. Arora and K. Chang. Approximation schemes for degree-restricted MST and red-blue separation problems. Algorithmica, 40(3):189--210, 2004.
[4]
T. M. Chan. Euclidean bounded--degree spanning tree ratios. Discrete Comput. Geom., 32(2):177--194, 2004.
[5]
E. D. Demaine, J. S. B. Mitchell, and J. O'Rourke. The Open Problems Project. http://maven.smith.edu/~orourke/TOPP/.
[6]
S. P. Fekete. Problem 48: Bounded-degree minimum Euclidean spanning tree. http://maven.smith.edu/~orourke/TOPP/P48.html.
[7]
S. P. Fekete, S. Khuller, M. Klemmstein, B. Raghavachari, and N. Young. A network--flow technique for finding low-weight bounded-degree spanning trees. J. Algorithms, 24(2):310--324, 1997.
[8]
M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math., 32:826--834, 1977.
[9]
M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.
[10]
R. Jothi and B. Raghavachari. Degree-bounded minimum spanning trees. Discrete Appl. Math., 157(5):960--970, 2009.
[11]
S. Khuller, B. Raghavachari, and N. Young. Low-degree spanning trees of small weight. SIAM J. Comput., 25(2):355--368, 1996.
[12]
J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput., 28:1298--1309, 1999.
[13]
C. Monma and S. Suri. Transitions in geometric minimum spanning trees. Discrete Comput. Geom., 8(3):265--293, 1992.
[14]
C. H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete. Theoret. Comput. Sci., 4:237--244, 1977.
[15]
C. H. Papadimitriou and U. V. Vazirani. On two geometric problems related to the travelling salesman problem. J. Algorithms, 5:231--246, 1984.
[16]
A. Papakostas and I. G. Tollis. Algorithms for area-efficient orthogonal drawings. Comput. Geom. Theory Appl., 9(1-2):83--110, 1998.
[17]
G. Robins and J. S. Salowe. Low-degree minimum spanning trees. Discrete Comput. Geom., 14(2):151--165, 1995.
[18]
R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE Trans. Circuits Syst., CAS-36(9):1230--1234, 1989.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SCG '09: Proceedings of the twenty-fifth annual symposium on Computational geometry
June 2009
426 pages
ISBN:9781605585017
DOI:10.1145/1542362
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 June 2009

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. bounded-degree graphs
  2. degree-constricted graphs
  3. degree-restricted graphs
  4. geometric graphs
  5. geometric optimization
  6. np-complete
  7. reduction
  8. spanning trees

Qualifiers

  • Research-article

Conference

SoCG '09

Acceptance Rates

Overall Acceptance Rate 625 of 1,685 submissions, 37%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2021)Euclidean Bottleneck Bounded-Degree Spanning Tree RatiosDiscrete & Computational Geometry10.1007/s00454-021-00286-4Online publication date: 16-Apr-2021
  • (2019)Algorithms for Euclidean Degree Bounded Spanning Tree ProblemsInternational Journal of Computational Geometry & Applications10.1142/S021819591950003129:02(121-160)Online publication date: 20-Sep-2019
  • (2019)Degree bounded bottleneck spanning trees in three dimensionsJournal of Combinatorial Optimization10.1007/s10878-019-00490-2Online publication date: 29-Nov-2019
  • (2016)Minimum bottleneck spanning trees with degree boundsNetworks10.1002/net.2171068:4(302-314)Online publication date: 1-Dec-2016
  • (2014)On the area requirements of Euclidean minimum spanning treesComputational Geometry: Theory and Applications10.1016/j.comgeo.2012.10.01147:2(200-213)Online publication date: 1-Feb-2014
  • (2012)Robust Sensor Range for Constructing Strongly Connected Spanning Digraphs in UDGsComputer Science – Theory and Applications10.1007/978-3-642-30642-6_12(112-124)Online publication date: 2012
  • (2011)On the area requirements of Euclidean minimum spanning treesProceedings of the 12th international conference on Algorithms and data structures10.5555/2033190.2033193(25-36)Online publication date: 15-Aug-2011
  • (2011)Polynomial area bounds for MST embeddings of treesComputational Geometry: Theory and Applications10.1016/j.comgeo.2011.05.00544:9(529-543)Online publication date: 1-Nov-2011
  • (2011)On the Area Requirements of Euclidean Minimum Spanning TreesAlgorithms and Data Structures10.1007/978-3-642-22300-6_3(25-36)Online publication date: 2011
  • (2010)Strong connectivity in sensor networks with given number of directional antennae of bounded angleProceedings of the 4th international conference on Combinatorial optimization and applications - Volume Part II10.5555/1940424.1940430(72-86)Online publication date: 18-Dec-2010
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media