Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Multi-Pattern GPU Accelerated Collision-Less Rabin-Karp for NIDS

Published: 09 April 2024 Publication History

Abstract

In the domain of network communication, network intrusion detection systems (NIDS) play a crucial role in maintaining security by identifying potential threats. NIDS relies on packet inspection, often using rule-based databases to scan for malicious patterns. However, the expanding scale of internet connections hampers the rate of packet inspection. To address this, some systems employ GPU accelerated pattern matching algorithms. Yet, this approach is susceptible to denial of service (DOS) attacks, inducing hashing collisions and slowing inspection. This research introduces a GPU-optimized variation of the Rabin-Karp algorithm, achieving scalability on GPUs while resisting DOS attacks. Our open-source solution (https://github.com/AnasAbbas1/NIDS) combines six polynomial hashing functions, eliminating the need for false-positive validation. This leads to a substantial improvement in inspection speed and accuracy. The proposed system ensures minimal packet misclassification rates, solidifying its role as a robust tool for real-time network security.

References

[1]
Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., & Ahmad, F. (2021). Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies, 32(1), e4150.
[2]
Aho, A. V, & Corasick, M. J. (1975). Efficient String Matching: An Aid to Bibliographic Search.
[3]
Aigbe, P., & Nwelih, E. (2021). Analysis and Performance Evaluation of Selected Pattern Matching Algorithms. NIPES Journal of Science and Technology Research, 3(2). Advance online publication.
[4]
Azarudeen, k., Kumar, S. H., Aswin Vijay, T. V, Thirukumaran, P., & Balaji, V. S. B. (2023). Intrusion Detection System based on Pattern Recognition using CNN. 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), (pp. 567–574). IEEE. 10.1109/ICSCSS57650.2023.10169670
[5]
Baloi, A., Belean, B., Turcu, F., & Peptenatu, D. (2023). GPU-based similarity metrics computation and machine learning approaches for string similarity evaluation in large datasets. Soft Computing. Advance online publication.
[6]
BoukebousA. A. E.FettacheM. I.BendiabG.ShiaelesS. (2023). A Comparative Analysis of Snort 3 and Suricata. 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET), (pp. 1–6). IEEE. 10.1109/GlobConET56651.2023.10150141
[7]
Boyer, R. S., & Moore, J. S. (1977). A fast string searching algorithm. Communications of the ACM, 20(10), 762–772.
[8]
Çelebi, M., & Yavanoğlu, U. (2023). Accelerating Pattern Matching Using a Novel Multi-Pattern-Matching Algorithm on GPU. Applied Sciences (Basel, Switzerland), 13(14), 8104.
[9]
Chen, C. L., & Lai, J. L. (2023). An Experimental Detection of Distributed Denial of Service Attack in CDX 3 Platform Based on Snort. Sensors (Basel), 23(13), 6139. 37447987.
[10]
Fernandez De Arroyabe, I., Arranz, C. F. A., Arroyabe, M. F., & Fernandez de Arroyabe, J. C. (2023). Cybersecurity capabilities and cyber-attacks as drivers of investment in cybersecurity systems: A UK survey for 2018 and 2019. Computers & Security, 124, 102954.
[11]
Groth, T., Groppe, S., Pionteck, T., Valdiek, F., & Koppehel, M. (2023). Hybrid CPU/GPU/APU accelerated query, insert, update and erase operations in hash tables with string keys. Knowledge and Information Systems, 65(10), 4359–4377.
[12]
Gulyás, O., & Kiss, G. (2023). Impact of cyber-attacks on the financial institutions. Procedia Computer Science, 219, 84–90.
[13]
Hnaif, A., Jaber, K., Alia, M., & Daghbosheh, M. (2021). Parallel scalable approximate matching algorithm for network intrusion detection systems. The International Arab Journal of Information Technology, 18(1), 77–84.
[14]
Jakim, B., Shankar, D., Victo, G., George, S., Naidu, J., & Madhuri, S. (n.d.). Deep Analysis of Risks and Recent Trends Towards Network Intrusion Detection System. In IJACSA) International Journal of Advanced Computer Science and Applications, 14(1). www.ijacsa.thesai.org
[15]
Karcioglu, A. A., & Bulut, H. (2021). Improving hash-q exact string matching algorithm with perfect hashing for DNA sequences. Computers in Biology and Medicine, 131, 104292. 33662682.
[16]
Karp, R. M., & Rabin, M. O. (1987). Efficient randomized pattern-matching algorithms. IBM Journal of Research and Development, 31(2), 249–260.
[17]
Keserwani, P. K., Govil, M. C., & Pilli, E. S. (2023). An effective NIDS framework based on a comprehensive survey of feature optimization and classification techniques. Neural Computing & Applications, 35(7), 4993–5013.
[18]
Knuth, D. E., & Morris James, H. (1977). Fast pattern matching in strings. SIAM Journal on Computing, 6(2), 323–350.
[19]
Li, Y., & Liu, Q. (2021). A comprehensive review study of cyber-attacks and cyber security; Emerging trends and recent developments. Energy Reports, 7, 8176–8186.
[20]
Liao, H. J., Richard Lin, C. H., Lin, Y. C., & Tung, K. Y. (2013). Intrusion detection system: A comprehensive review. In Journal of Network and Computer Applications, 36(1), 16–24.
[21]
Merrill, D. (n.d.). CUB: A pattern of “collective” software design, abstraction, and reuse for kernel-level programming. Research Gate.
[22]
Merrill, D., & Garland, M. (n.d.). Single-pass Parallel Prefix Scan with Decoupled Look-back. Research Gate.
[23]
Mijwil, M., Unogwu, O. J., Filali, Y., Bala, I., & Al-Shahwani, H. (2023). Exploring the Top Five Evolving Threats in Cybersecurity: An In-Depth Overview. Mesopotamian Journal of Cyber Security, 57–63. 10.58496/MJCS/2023/010
[24]
Najam-ul-Islam, M., Zahra, F. T., Jafri, A. R., Shah, R., Hassan, M., & Rashid, M. (2022). Auto implementation of parallel hardware architecture for Aho-Corasick algorithm. Design Automation for Embedded Systems, 26(1), 29–53.
[25]
Nunes, L. S. N., Bordim, J. L., Ito, Y., & Nakano, K. (2020). A rabin-karp implementation for handling multiple pattern-matching on the gpu. IEICE Transactions on Information and Systems, E103D(12), 2412–2420. 10.1587/transinf.2020PAP0002
[26]
Papadogiannaki, E., Ioannidis, S., & Tsirantonakis, G. (n.d.). Network Intrusion Detection in Encrypted Traffic Article Social media analysis during political turbulence View project Network Intrusion Detection in Encrypted Traffic. Research Gate. https://www.researchgate.net/publication/362263511
[27]
Sardar, A., Issa, A., & Albayrak, Z. (n.d.). DDoS Attack Intrusion Detection System Based on Hybridization of CNN and LSTM. In Acta Polytechnica Hungarica, 20(2).
[28]
Siva Kumar, C., Sandeep, V., & Reddy, K. (n.d.). Design of Acceptance Sampling based Network Intrusion Detection system using Deep Learning Techniques Mohd khalid 2. In Journal of Survey in Fisheries Sciences, 10(1).
[29]
Sommestad, T., Holm, H., & Steinvall, D. (2022). Variables influencing the effectiveness of signature-based network intrusion detection systems. Information Security Journal, 31(6), 711–728.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Distributed Systems and Technologies
International Journal of Distributed Systems and Technologies  Volume 15, Issue 1
Nov 2024
163 pages

Publisher

IGI Global

United States

Publication History

Published: 09 April 2024

Author Tags

  1. Aho-Corasick
  2. Rabin karp
  3. collisionless
  4. CUDA
  5. CUDACUB
  6. DDOS attack
  7. GPU
  8. NIDS
  9. Pattern matching
  10. hashing

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media