Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

On Two Variants of an Algebraic Wavelet Preconditioner

Published: 01 January 2002 Publication History

Abstract

A recursive method of constructing preconditioning matrices for the nonsymmetric stiffness matrix in a wavelet basis is proposed for solving a class of integral and differential equations. It is based on a level-by-level application of the wavelet scales decoupling the different wavelet levels in a matrix form just as in the well-known nonstandard form. The result is a powerful iterative method with built-in preconditioning leading to two specific algebraic multilevel iteration algorithms: one with an exact Schur preconditioning and the other with an approximate Schur preconditioning. Numerical examples are presented to illustrate the efficiency of the new algorithms.

References

[1]
K. Amaratunga, A wavelet‐based approach for the compression of kernel data in large scale simulations of 3D integral problems, IEEE Comput. Sci. Engrg., 2 (2000), pp. 34–45.
[2]
O. Axelsson, P. Vassilevski, Algebraic multilevel preconditioning methods. I, Numer. Math., 56 (1989), 157–177
[3]
O. Axelsson, P. Vassilevski, Algebraic multilevel preconditioning methods. II, SIAM J. Numer. Anal., 27 (1990), 1569–1590
[4]
O. Axelsson, M. Neytcheva, Algebraic multilevel iteration method for Stieltjes matrices, Numer. Linear Algebra Appl., 1 (1994), 213–236
[5]
O. Axelsson and M. Neytcheva, The Algebraic Multilevel Iteration Methods—Theory and Applications, preprint, 1994.
[6]
Owe Axelsson, Alexander Padiy, On the additive version of the algebraic multilevel iteration method for anisotropic elliptic problems, SIAM J. Sci. Comput., 20 (1999), 1807–1830
[7]
Randolph Bank, Hierarchical bases and the finite element method, Acta Numer., Vol. 5, Cambridge Univ. Press, Cambridge, 1996, 1–43
[8]
Maurice Benson, Paul Frederickson, Iterative solution of large sparse linear systems arising in certain multidimensional approximation problems, Utilitas Math., 22 (1982), 127–140
[9]
Michele Benzi, John Haws, Miroslav Tůma, Preconditioning highly indefinite and nonsymmetric matrices, SIAM J. Sci. Comput., 22 (2000), 1333–1353
[10]
G. Beylkin, R. Coifman, V. Rokhlin, Fast wavelet transforms and numerical algorithms. I, Comm. Pure Appl. Math., 44 (1991), 141–183
[11]
D. Bond and S. Vavasis, Fast Wavelet Transforms for Matrices Arising from Boundary Element Methods, Computer Science Research Report TR‐174, Cornell University, Ithaca, NY, 1994.
[12]
E. Botta, F. Wubs, Matrix renumbering ILU: an effective algebraic multilevel ILU preconditioner for sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), 1007–1026, Sparse and structured matrices and their applications (Coeur d’Alene, ID, 1996)
[13]
T. F. Chan and K. Chen, Two‐Stage Preconditioners Using Wavelet Band Splitting and Sparse Approximation, CAM Report 00‐26, Department of Mathematics, UCLA, 2000.
[14]
T. Chan, W. Tang, W. Wan, Wavelet sparse approximate inverse preconditioners, BIT, 37 (1997), 644–660, Direct methods, linear algebra in optimization, iterative methods (Toulouse, 1995/1996)
[15]
Ke Chen, Discrete wavelet transforms accelerated sparse preconditioners for dense boundary element systems, Electron. Trans. Numer. Anal., 8 (1999), 138–153
[16]
Ke Chen, An analysis of sparse approximate inverse preconditioners for boundary integral equations, SIAM J. Matrix Anal. Appl., 22 (2001), 1058–1078
[17]
Albert Cohen, Wolfgang Dahmen, Ronald DeVore, Adaptive wavelet methods for elliptic operator equations: convergence rates, Math. Comp., 70 (2001), 27–75
[18]
A. Cohen, R. Masson, Wavelet methods for second‐order elliptic problems, preconditioning, and adaptivity, SIAM J. Sci. Comput., 21 (1999), 1006–1026
[19]
A. Cohen, R. Masson, Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition, Numer. Math., 86 (2000), 193–238
[20]
Wolfgang Dahmen, Wavelet and multiscale methods for operator equations, Acta Numer., Vol. 6, Cambridge Univ. Press, Cambridge, 1997, 55–228
[21]
Iain Duff, Jacko Koster, The design and use of algorithms for permuting large entries to the diagonal of sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), 889–901, Sparse and structured matrices and their applications (Coeur d’Alene, ID, 1996)
[22]
D. Gines, G. Beylkin, J. Dunn, LU factorization of non‐standard forms and direct multiresolution solvers, Appl. Comput. Harmon. Anal., 5 (1998), 156–201
[23]
A. Harten, Multiresolution Representation and Numerical Algorithms: A Brief Review, CAM Report 94‐12, Department of Mathematics, UCLA, 1994.
[24]
L. Kolotilina, A. Yeremin, On a family of two‐level preconditionings of the incomplete block factorization type, Soviet J. Numer. Anal. Math. Modelling, 1 (1986), 293–320
[25]
J. Kovačević and W. Sweldens, Wavelet families of increasing order in arbitrary dimensions, IEEE Trans. Image Process., 9 (2000), pp. 480–496.
[26]
M. Neytcheva, Algebraic Multilevel Iteration Preconditioning Technique—A Matlab Implementation, available online from http://www.netlib.org, 1998.
[27]
Maya Neytcheva, Panayot Vassilevski, Preconditioning of indefinite and almost singular finite element elliptic equations, SIAM J. Sci. Comput., 19 (1998), 1471–1485
[28]
Y. Saad, ILUM: a multi‐elimination ILU preconditioner for general sparse matrices, SIAM J. Sci. Comput., 17 (1996), 830–847
[29]
Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston, 1996.
[30]
Youcef Saad, Martin Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), 856–869
[31]
Yousef Saad, Henk van der Vorst, Iterative solution of linear systems in the 20th century, J. Comput. Appl. Math., 123 (2000), 1–33, Numerical analysis 2000, Vol. III. Linear algebra
[32]
Yousef Saad, Jun Zhang, BILUM: block versions of multielimination and multilevel ILU preconditioner for general sparse linear systems, SIAM J. Sci. Comput., 20 (1999), 2103–2121
[33]
Yousef Saad, Jun Zhang, Enhanced multi‐level block ILU preconditioning strategies for general sparse linear systems, J. Comput. Appl. Math., 130 (2001), 99–118
[34]
Gilbert Strang, Truong Nguyen, Wavelets and filter banks, Wellesley‐Cambridge Press, 1996xxii+490
[35]
Wim Sweldens, The lifting scheme: a construction of second generation wavelets, SIAM J. Math. Anal., 29 (1998), 511–546
[36]
Panayot Vassilevski, On two ways of stabilizing the hierarchical basis multilevel methods, SIAM Rev., 39 (1997), 18–53
[37]
P. Vassilevski, Hybrid V‐cycle algebraic multilevel preconditioners, Math. Comp., 58 (1992), 489–512
[38]
P. S. Vassilevski, Nearly Optimal Iterative Methods for Solving Finite Element Elliptic Equations Based on the Multilevel Splitting of the Matrix, Report 1989‐09, ISC, University of Wyoming, Laramie, WY, 1989.
[39]
W. L. Wan, Scalable and Multilevel Iterative Methods, Ph.D. thesis, CAM Report 98‐29, Department of Mathematics, UCLA, 1998.
[40]
H. Yserentant, On the multi‐level splitting of finite element spaces, Numer. Math., 49 (1986), pp. 379–412.
[41]
H. M. Zhou, Wavelet Transforms and PDE Techniques in Image Compression, Ph.D. thesis, CAM Report 00‐21, Department of Mathematics, UCLA, 2000.

Cited By

View all
  • (2009)Partial data replication as a strategy for parallel computing of the multilevel discrete wavelet transformProceedings of the 8th international conference on Parallel processing and applied mathematics: Part I10.5555/1882792.1882800(51-60)Online publication date: 13-Sep-2009
  • (2007)A short survey on preconditioning techniques for large-scale dense complex linear systems in electromagneticsInternational Journal of Computer Mathematics10.1080/0020716070135593884:8(1211-1223)Online publication date: 1-Aug-2007
  • (2007)Compatibility of Scalapack with the Discrete Wavelet TransformProceedings of the 7th international conference on Computational Science, Part I: ICCS 200710.1007/978-3-540-72584-8_20(152-159)Online publication date: 27-May-2007
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 24, Issue 1
2002
358 pages

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2002

Author Tags

  1. 65Y05
  2. 65F35
  3. 65Y20

Author Tags

  1. multilevel preconditioner
  2. multiresolution
  3. level-by-level transforms
  4. sparse approximate inverse
  5. Schur complements
  6. wavelets

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2009)Partial data replication as a strategy for parallel computing of the multilevel discrete wavelet transformProceedings of the 8th international conference on Parallel processing and applied mathematics: Part I10.5555/1882792.1882800(51-60)Online publication date: 13-Sep-2009
  • (2007)A short survey on preconditioning techniques for large-scale dense complex linear systems in electromagneticsInternational Journal of Computer Mathematics10.1080/0020716070135593884:8(1211-1223)Online publication date: 1-Aug-2007
  • (2007)Compatibility of Scalapack with the Discrete Wavelet TransformProceedings of the 7th international conference on Computational Science, Part I: ICCS 200710.1007/978-3-540-72584-8_20(152-159)Online publication date: 27-May-2007
  • (2005)An Implicit Wavelet Sparse Approximate Inverse PreconditionerSIAM Journal on Scientific Computing10.1137/S106482750342350027:2(667-686)Online publication date: 1-Aug-2005
  • (2003)Combining Kronecker Product Approximation with Discrete Wavelet Transforms to Solve Dense, Function-Related Linear SystemsSIAM Journal on Scientific Computing10.1137/S106482750342168925:3(961-981)Online publication date: 1-Jan-2003

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media