Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Optimal Dividend Strategies with Reinsurance under Contagious Systemic Risk

Published: 01 January 2022 Publication History

Abstract

This paper studies the multidimensional mixed singular-regular stochastic control problems subject to reduced-form default driven by contagious intensities. The dynamic process of surplus is given by a system of diffusion processes with two controls, and the intensity of the reduced-form model increases when defaults occur. We derive the recursive Hamilton--Jacobi--Bellman variational inequalities by the dynamic programming principle and present analytical and recursive solutions. We prove that the solutions are classical and recursively associated with each other by the default states. The verification theorem is presented.

References

[1]
L. H. R. Alvarez, Singular stochastic control, linear diffusions, and optimal stopping: A class of solvable problems, SIAM J. Control Optim., 39 (2001), pp. 1697--1710, https://doi.org/10.1137/S0363012900367825.
[2]
S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insurance Math. Econom., 20 (1997), pp. 1--15.
[3]
P. Azcue and N. Muler, Optimal dividend payment and regime switching in a compound Poisson risk model, SIAM J. Control Optim., 53 (2015), pp. 3270--3298, https://doi.org/10.1137/130921726.
[4]
L. Bai and J. Paulsen, Optimal dividend policies with transaction costs for a class of diffusion processes, SIAM J. Control Optim., 48 (2010), pp. 4987--5008, https://doi.org/10.1137/090773210.
[5]
T. R. Bielecki and M. Rutkowski, Credit Risk: Modeling, Valuation and Hedging, Springer, New York, 2004.
[6]
D. Bisias, M. Flood, A. W. Lo, and S. Valavanis, A survey of systemic risk analytics, Ann. Rev. Financ. Econ., 4 (2012), pp. 255--296.
[7]
L. Bo and A. Capponi, Optimal investment in credit derivatives portfolio under contagion risk, Math. Finance, 26 (2016), pp. 785--834.
[8]
L. Bo and A. Capponi, Optimal investment under information driven contagious distress, SIAM J. Control Optim., 55 (2017), pp. 1020--1068, https://doi.org/10.1137/140972342.
[9]
L. Bo, H. Liao, and X. Yu, Risk sensitive portfolio optimization with default contagion and regime-switching, SIAM J. Control Optim., 57 (2019), pp. 366--401, https://doi.org/10.1137/18M1166274.
[10]
R. Carmona, J.-P. Fouque, and L.-H. Sun, Mean field games and systemic risk, Commun. Math. Sci., 13 (2015), pp. 911--933.
[11]
T. Choulli, M. Taksar, and X. Y. Zhou, A diffusion model for optimal dividend distribution for a company with constraints on risk control, SIAM J. Control Optim., 41 (2003), pp. 1946--1979, https://doi.org/10.1137/S0363012900382667.
[12]
J. Cvitanić, J. Ma, and J. Zhang, The law of large numbers for self-exciting correlated defaults, Stochastic Process. Appl., 122 (2012), pp. 2781--2810.
[13]
B. De Finetti, Su un'impostazione alternativa della teoria collettiva del rischio, in Proceedings of the Transactions of the XVth International Congress of Actuaries, vol. 2, New York, 1957, pp. 433--443.
[14]
L. C. Evans, Partial Differential Equations, 2nd ed., Grad. Stud. Math. 19, American Mathematical Society, Providence, RI, 2010.
[15]
G. Ferrari and P. Schuhmann, An optimal dividend problem with capital injections over a finite horizon, SIAM J. Control Optim., 57 (2019), pp. 2686--2719, https://doi.org/10.1137/18M1184588.
[16]
W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York, 1975.
[17]
J.-P. Fouque and J. A. Langsam, eds., Handbook on Systemic Risk, Cambridge University Press, Cambridge, UK, 2013.
[18]
K. A. Froot, The market for catastrophe risk: A clinical examination, J. Financ. Econ., 60 (2001), pp. 529--571.
[19]
J. Garnier, G. Papanicolaou, and T.-W. Yang, Large deviations for a mean field model of systemic risk, SIAM J. Financial Math., 4 (2013), pp. 151--184, https://doi.org/10.1137/12087387X.
[20]
H. U. Gerber and E. S. W. Shiu, Optimal dividends: Analysis with Brownian motion, N. Am. Actuar. J., 8 (2004), pp. 1--20.
[21]
K. Giesecke, K. Spiliopoulos, and R. B. Sowers, Default clustering in large portfolios: Typical events, Ann. Appl. Probab., 23 (2013), pp. 348--385.
[22]
X. Guo, J. Liu, and X. Y. Zhou, A constrained non-linear regular-singular stochastic control problem, with applications, Stochastic Process. Appl., 109 (2004), pp. 167--187.
[23]
B. Hambly and A. Søjmark, An SPDE model for systemic risk with endogenous contagion, Finance Stoch., 23 (2019), pp. 535--594.
[24]
J. M. Harrison, Brownian Motion and Stochastic Flow Systems, Wiley, New York, 1985.
[25]
B. Højgaard and M. Taksar, Controlling risk exposure and dividends payout schemes: Insurance company example, Math. Finance, 9 (1999), pp. 153--182.
[26]
D. L. Iglehart, Diffusion approximations in collective risk theory, J. Appl. Probab., 6 (1969), pp. 285--292.
[27]
R. A. Jarrow and S. M. Turnbull, Pricing derivatives on financial securities subject to credit risk, J. Finance, 50 (1995), pp. 53--85.
[28]
Z. Jin, H. Liao, Y. Yang, and X. Yu, Optimal dividend strategy for an insurance group with contagious default risk, Scand. Actuar. J., 2021 (2021), pp. 335--361.
[29]
Z. Jin, H. Yang, and G. Yin, Numerical methods for optimal dividend payment and investment strategies of regime-switching jump diffusion models with capital injections, Automatica, 49 (2013), pp. 2317--2329.
[30]
Z. Jin, H. Yang, and G. Yin, A hybrid deep learning method for optimal insurance strategies: Algorithms and convergence analysis, Insurance Math. Econom., 96 (2021), pp. 262--275.
[31]
H. Kushner and P. G. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, 2nd ed., Springer, New York, 2001.
[32]
J. Ma, On the principle of smooth fit for a class of singular stochastic control problems for diffusions, SIAM J. Control Optim., 30 (1992), pp. 975--999, https://doi.org/10.1137/0330053.
[33]
H. Meng and T. K. Siu, Optimal mixed impulse-equity insurance control problem with reinsurance, SIAM J. Control Optim., 49 (2011), pp. 254--279, https://doi.org/10.1137/090773167.
[34]
R. K. Nagle, E. B. Saff, and A. D. Snider, Fundamentals of Differential Equations, 9th ed., Pearson, Boston, 2018.
[35]
J. Paulsen, Optimal dividend payments and reinvestments of diffusion processes with both fixed and proportional costs, SIAM J. Control Optim., 47 (2008), pp. 2201--2226, https://doi.org/10.1137/070691632.
[36]
H. Schmidli, Stochastic Control in Insurance, Springer, London, 2008.
[37]
Q. Song, R. H. Stockbridge, and C. Zhu, On optimal harvesting problems in random environments, SIAM J. Control Optim., 49 (2011), pp. 859--889, https://doi.org/10.1137/100797333.
[38]
L. R. Sotomayor and A. Cadenillas, Classical and singular stochastic control for the optimal dividend policy when there is regime switching, Insurance Math. Econom., 48 (2011), pp. 344--354.
[39]
M. Taksar, Optimal risk and dividend distribution control models for an insurance company, Math. Methods Oper. Res., 51 (2000), pp. 1--42.
[40]
J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer, New York, 1999.
[41]
X. Zeng and S. Luo, Stochastic pareto-optimal reinsurance policies, Insurance Math. Econom., 53 (2013), pp. 671--677.
[42]
M. Zhanblan-Pike and A. N. Shiryaev, Optimization of the flow of dividends, Uspekhi Mat. Nauk, 50 (1995), pp. 25--46 (in Russian); translation in Russian Math. Surveys, 50 (1995), pp. 257--277.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization  Volume 60, Issue 3
DOI:10.1137/sjcodc.60.3
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2022

Author Tags

  1. optimal dividends
  2. reinsurance
  3. systemic risk
  4. contagion effect
  5. singular control

Author Tags

  1. 93E20
  2. 49L12
  3. 91G45

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Dec 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media