Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Integer Flows and Modulo Orientations of Signed Graphs

Published: 01 January 2021 Publication History

Abstract

This paper studies the fundamental relations among integer flows, modulo orientations, integer-valued and real-valued circular flows, and monotonicity of flows in signed graphs. A (signed) graph is modulo-$(2p+1)$-orientable if it has an orientation such that the indegree is congruent to the outdegree modulo $2p+1$ at each vertex. An integer-valued $\frac{2p+1}{p}$-flow is a flow taking integer values in $\{\pm p, \pm (p+1)\}$. Extending a fundamental result of Jaeger to signed graphs, we show that a bridgeless signed graph is modulo-$(2p+1)$-orientable if and only if it admits an integer-valued $\frac{2p+1}{p}$-flow. It was conjectured by Raspaud and Zhu that, for any signed graph, the admission of a circular $r$-flow implies the admission of an integer-valued $\lceil r \rceil$-flow. Although this conjecture has been disproved in general, it is confirmed in this paper for bridgeless signed graphs if $r=\frac{2p+1}{p}$ and $p \geq 3$.

References

[1]
F. Bäbler, Über die Zerlegung regulären Streckenkomplexe ungerader Ordnung, Comment. Math. Helv., 10 (1938), pp. 275--287.
[2]
J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[3]
R. Diestel, Graph Theory, 4th ed., Springer, Heidelberg, 2010.
[4]
A. Bouchet, Nowhere-zero integral flows on a bidirected graph, J. Combin. Theory Ser. B, 34 (1983), pp. 279--292.
[5]
J. Cheng, Y. Lu, R. Luo, and C.-Q. Zhang, Signed graphs: From modulo flows to integer-valued flows, SIAM J. Discrete Math., 32 (2018), pp. 956--965, https://doi.org/10.1137/17M1126072.
[6]
M. DeVos, J. Li, Y. Lu, R. Luo, C.-Q. Zhang, and Z. Zhang, Flows on flow-admissible signed graphs, J. Combin. Theory Ser. B, available online (2020), https://doi.org/10.1016/j.jctb.2020.04.008.
[7]
H. Fleischner, Eine gemeinsame Basis für die Theorie der Eulerschen Graphen und den Satz von Petersen, Monatsh. Math., 81 (1976), pp. 267--278.
[8]
H. Fleischner, Eulerian Graphs and Related Topics, Part 1, Vol. 1, Ann. Discrete Math. 45, North-Holland, Amsterdam, 1990.
[9]
L.A. Goddyn, M. Tarsi, and C.-Q. Zhang, On $(k,d)$-colorings and fractional nowhere zero flows, J. Graph Theory, 28 (1998), pp. 155--161.
[10]
M. Han, J. Li, Y. Wu, and C.-Q. Zhang, Counterexamples to Jaeger's circular flow conjecture, J. Combin. Theory Ser. B, 131 (2018), pp. 1--11.
[11]
F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory Ser. B, 26 (1979), pp. 205--216.
[12]
F. Jaeger, On circular flows in graphs, in Finite and Infinite Sets, Vol. I, II (Eger, 1981), Colloq. Math. János Bolyai 37, North-Holland, Amsterdam, 1984, pp. 391--402.
[13]
F. Jaeger, Nowhere-zero flow problems, in Selected Topics in Graph Theory 3, L.W. Beineke and R.J. Wilson, eds., Academic Press, San Diego, CA, 1988, pp. 71--95.
[14]
A. Kompišová and E. Máčajová, Flow number and circular flow number of signed cubic graphs, Acta Math. Univ. Comenian. (N.S.), 88 (2019), pp. 877--883.
[15]
M. Kano, [a,b]-factorization of a graph, J. Graph Theory, 9 (1985), pp. 129--146.
[16]
M. Kano, Factors of regular graphs, J. Combin. Theory Ser. B, 41 (1986), pp. 27--36.
[17]
J. Li, Y. Wu, and C.-Q. Zhang, Circular flows via extended Tutte orientations, J. Combin. Theory Ser. B, 145 (2020), pp. 307--322.
[18]
L.M. Lovász, C. Thomassen, Y. Wu, and C.-Q. Zhang, Nowhere-zero \textup3-flows and modulo $k$-orientations, J. Combin. Theory Ser. B, 103 (2013), pp. 587--598.
[19]
Y. Lu, R. Luo, M. Schubert, E. Steffen, and C.-Q. Zhang, Flows on signed graphs without long barbells, SIAM J. Discrete Math., 34 (2020), pp. 2166--2182, https://doi.org/10.1137/18M1222818.
[20]
E. Mačajova and E. Steffen, The difference between the circular and the integer flow number of bidirected graphs, Discrete Math., 338 (2015), pp. 866--867.
[21]
W. Mader, A reduction method for edge-connectivity in graphs, Ann. Discrete Math., 3 (1978), pp. 145--164.
[22]
C.St.J.A. Nash-Williams, Connected detachments of graphs and generalized Euler trails, J. London Math. Soc. (2), 31 (1985), pp. 17--29.
[23]
A. Raspaud and X. Zhu, Circular flow on signed graphs, J. Combin. Theory Ser. B, 101 (2011), pp. 464--479.
[24]
M. Schubert and E. Steffen, Nowhere-zero flows on signed regular graphs, European J. Combin., 48 (2015), pp. 34--47.
[25]
P.D. Seymour, Nowhere-zero 6-flows, J. Combin. Theory Ser. B, 30 (1981), pp. 130--135.
[26]
C. Thomassen, The weak 3-flow conjecture and the weak circular flow conjecture, J. Combin. Theory Ser. B, 102 (2012), pp. 521--529.
[27]
W.T. Tutte, The factors of graphs, Canad. J. Math., 4 (1952), pp. 314--328.
[28]
W.T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math., 6 (1954), pp. 80--91.
[29]
W.T. Tutte, On the imbedding of linear graphs in surfaces, Proc. London Math. Soc. Ser. 2, 51 (1949), pp. 474--483.
[30]
D.B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ, 1996.
[31]
R. Xu and C.-Q. Zhang, On flows in bidirected graphs, Discrete Math., 299 (2005), pp. 335--343.
[32]
C.-Q. Zhang, Circular flows of nearly Eulerian graphs and vertex-splitting, J. Graph Theory, 40 (2002), pp. 147--161.
[33]
X. Zhu, Circular flow number of highly edge connected signed graphs, J. Combin. Theory Ser. B, 112 (2015), pp. 93--103.

Index Terms

  1. Integer Flows and Modulo Orientations of Signed Graphs
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image SIAM Journal on Discrete Mathematics
          SIAM Journal on Discrete Mathematics  Volume 35, Issue 1
          DOI:10.1137/sjdmec.35.1
          Issue’s Table of Contents

          Publisher

          Society for Industrial and Applied Mathematics

          United States

          Publication History

          Published: 01 January 2021

          Author Tags

          1. signed graph
          2. nowhere-zero flow
          3. circular flow
          4. modulo orientation
          5. integer flow

          Author Tags

          1. 05C21
          2. 05C22
          3. 05C15

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 22 Nov 2024

          Other Metrics

          Citations

          View Options

          View options

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media