Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3470496.3527381acmconferencesArticle/Chapter ViewAbstractPublication PagesiscaConference Proceedingsconference-collections
research-article
Open access

A synthesis framework for stitching surface code with superconducting quantum devices

Published: 11 June 2022 Publication History

Abstract

Quantum error correction (QEC) is the central building block of fault-tolerant quantum computation but the design of QEC codes may not always match the underlying hardware. To tackle the discrepancy between the quantum hardware and QEC codes, we propose a synthesis framework that can implement and optimize the surface code onto superconducting quantum architectures. In particular, we divide the surface code synthesis into three key subroutines. The first two optimize the mapping of data qubits and ancillary qubits including syndrome qubits on the connectivity-constrained superconducting architecture, while the last subroutine optimizes the surface code execution by rescheduling syndrome measurements. Our experiments on mainstream superconducting architectures demonstrate the effectiveness of the proposed synthesis framework. Especially, the surface codes synthesized by the proposed automatic synthesis framework can achieve comparable or even better error correction capability than manually designed QEC codes.

References

[1]
MD SAJID ANIS, Abby-Mitchell, Héctor Abraham, et al., 2021. Qiskit: An Open-source Framework for Quantum Computing.
[2]
F. Arute, K. Arya, R. Babbush, D. Bacon, J. Bardin, R. Barends, R. Biswas, S. Boixo, F. Brandão, D. Buell, B. Burkett, Y. Chen, Zijun Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, Keith Guerin, Steve Habegger, M. Harrigan, M. Hartmann, A. Ho, M. Hoffmann, Trent Huang, T. Humble, S. Isakov, E. Jeffrey, Zhang Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, Mike Lindmark, E. Lucero, Dmitry I. Lyakh, Salvatore Mandrà, J. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Niu, E. Ostby, A. Petukhov, John C. Platt, C. Quintana, E. Rieffel, P. Roushan, N. Rubin, D. Sank, K. Satzinger, V. Smelyanskiy, Kevin J. Sung, M. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. Yao, P. Yeh, Adam Zalcman, H. Neven, and J. Martinis. 2019. Quantum supremacy using a programmable superconducting processor. Nature 574 (2019), 505--510.
[3]
Torsten Asselmeyer-Maluga. 2021. 3D topological quantum computing. International Journal of Quantum Information (2021).
[4]
Rami Barends, Julian Kelly, Anthony Megrant, Andrzej Veitia, Daniel Sank, Evan Jeffrey, Ted C White, Josh Mutus, Austin G Fowler, Brooks Campbell, et al. 2014. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 7497 (2014), 500--503.
[5]
Sergey B Bravyi and A Yu Kitaev. 1998. Quantum codes on a lattice with boundary. arXiv preprint quant-ph/9811052 (1998).
[6]
A Robert Calderbank, Eric M Rains, Peter W Shor, and Neil JA Sloane. 1997. Quantum error correction and orthogonal geometry. Physical Review Letters 78, 3 (1997), 405.
[7]
A Robert Calderbank and Peter W Shor. 1996. Good quantum error-correcting codes exist. Physical Review A 54, 2 (1996), 1098.
[8]
C. Chamberland and M. Beverland. 2017. FLAG FAULT-TOLERANT ERROR CORRECTION WITH ARBITRARY DISTANCE CODES. arXiv: Quantum Physics 2 (2017), 53.
[9]
C. Chamberland, Aleksander Kubica, Theodore J. Yoder, and Guanyu Zhu. 2019. Triangular color codes on trivalent graphs with flag qubits. arXiv: Quantum Physics (2019).
[10]
C. Chamberland, Guanyu Zhu, Theodore J. Yoder, J. Hertzberg, and A. Cross. 2020. Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits. Physical Review X 10 (2020).
[11]
R. Chao and B. Reichardt. 2017. Fault-tolerant quantum computation with few qubits. npj Quantum Information 4 (2017), 1--8.
[12]
R. Chao and B. Reichardt. 2019. Flag fault-tolerant error correction for any stabilizer code. arXiv: Quantum Physics (2019).
[13]
Yu Chen, Charles J. Neill, Pedram Roushan, Nelson Leung, Michael Fang, Rami Barends, Julian Kelly, Brooks Campbell, Z Chen, Benjamin Chiaro, Andrew Dunsworth, Evan Jeffrey, Anthony Megrant, Josh Mutus, P. J. J. O'Malley, Chris Quintana, Daniel Thomas Sank, Amit Vainsencher, J. Wenner, Theodore White, Michael R. Geller, Andrew N Cleland, and John M. Martinis. 2014. Qubit Architecture with High Coherence and Fast Tunable Coupling. Physical review letters 113 22 (2014), 220502.
[14]
Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. 2002. Topological quantum memory. J. Math. Phys. 43, 9 (2002), 4452--4505.
[15]
Yongshan Ding, Adam Holmes, Ali JavadiAbhari, Diana Franklin, Margaret Martonosi, and Frederic T. Chong. 2018. Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures. 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) (2018), 828--840.
[16]
David P. DiVincenzo and Ibm. 2000. The Physical Implementation of Quantum Computation. Protein Science 48 (2000), 771--783.
[17]
Will Finigan, Michael Cubeddu, Thomas Lively, Johannes Flick, and Prineha Narang. 2018. Qubit allocation for noisy intermediate-scale quantum computers. arXiv preprint arXiv:1810.08291 (2018).
[18]
Austin G. Fowler. 2011. Two-dimensional color-code quantum computation. Physical Review A 83 (2011), 042310.
[19]
Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland. 2012. Surface codes: Towards practical large-scale quantum computation. Physical Review A 86, 3 (2012), 032324.
[20]
Craig Gidney. 2021. Stim: a fast stabilizer circuit simulator. Quantum 5 (July 2021), 497.
[21]
Alysson Gold, Anna Stockklauser, Matt Reagor, Jean-Philip Paquette, Andrew Bestwick, Cody James Winkleblack, Ben Scharmann, Feyza Oruc, and Brandon Langley. 2021. Experimental demonstration of entangling gates across chips in a multi-core QPU. Bulletin of the American Physical Society (2021).
[22]
DanielGottesman. 1996. Class of quantum error-correcting codes saturating the quantum Hamming bound. Physical Review A 54, 3 (1996), 1862.
[23]
Oscar Higgott. 2021. PyMatching: A Python package for decoding quantum codes with minimum-weight perfect matching. arXiv preprint arXiv:2105.13082 (2021).
[24]
Clare Horsman, Austin G. Fowler, Simon J. Devitt, and Rodney Van Meter. 2012. Surface code quantum computing by lattice surgery. New Journal of Physics 14 (2012), 123011.
[25]
Fei Hua, Yan-Hao Chen, Yuwei Jin, Chi Zhang, Ari B. Hayes, Youtao Zhang, and Eddy Z. Zhang. 2021. AutoBraid: A Framework for Enabling Efficient Surface Code Communication in Quantum Computing. MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture (2021).
[26]
J. Kelly. 2017. A Preview of Bristlecone, Google's New Quantum Processor. https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html.
[27]
Ali JavadiAbhari, Pranav Gokhale, Adam Holmes, Diana Franklin, Kenneth R. Brown, Margaret Martonosi, and Frederic T. Chong. 2017. Optimized Surface Code Communication in Superconducting Quantum Computers. 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) (2017), 692--705.
[28]
P. Jurcevic, Ali Javadi-Abhari, L. Bishop, I. Lauer, D. Bogorin, M. Brink, L. Capel-luto, O. Günlük, Toshinari Itoko, Naoki Kanazawa, A. Kandala, G. Keefe, Kevin D Krsulich, W. Landers, E. Lewandowski, D. McClure, G. Nannicini, Adinath Narasgond, H. Nayfeh, E. Pritchett, M. Rothwell, S. Srinivasan, N. Sundaresan, Cindy Wang, K. X. Wei, C. J. Wood, J. Yau, E. Zhang, O. Dial, J. Chow, and J. Gambetta. 2020. Demonstration of quantum volume 64 on a superconducting quantum computing system. Quantum Science & Technology 6 (2020).
[29]
A. Kandala, K. X. Wei, S. Srinivasan, E. Magesan, S. Carnevale, G. A. Keefe, D. Klaus, O. Dial, and D. C. McKay. 2021. Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression. Phys. Rev. Lett. 127 (Sep 2021), 130501. Issue 13.
[30]
Emanuel Knill, Raymond Laflamme, and Lorenza Viola. 2000. Theory of quantum error correction for general noise. Physical Review Letters 84, 11 (2000), 2525.
[31]
Pieter Kok, William J. Munro, Kae Nemoto, Timothy C. Ralph, Jonathan P. Dowling, and Gerard J. Milburn. 2007. Linear optical quantum computing with photonic qubits. Reviews of Modern Physics 79 (2007), 135--174.
[32]
L. Lao and C. G. Almudéver. 2020. Fault-tolerant quantum error correction on near-term quantum processors using flag and bridge qubits. Physical Review A 101 (2020), 032333.
[33]
Lingling Lao, Bert van Wee, Imran Ashraf, J. van Someren, Nader Khammassi, Koen Bertels, and Carmen Garcia Almudever. 2018. Mapping of lattice surgery-based quantum circuits on surface code architectures. Quantum Science and Technology (2018).
[34]
Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the qubit mapping problem for NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. 1001--1014.
[35]
Gushu Li, Yufei Ding, and Yuan Xie. 2020. Towards Efficient Superconducting Quantum Processor Architecture Design. Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (2020).
[36]
Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong, and Margaret Martonosi. 2019. Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. 1015--1029.
[37]
Michael A Nielsen and Isaac Chuang. 2002. Quantum computation and quantum information.
[38]
Hanhee Paik, David I. Schuster, Lev Bishop, Gerhard Kirchmair, Gianluigi Cate-lani, Adam P. Sears, B. R. Johnson, Matthew Reagor, Luigi Frunzio, Leonid I. Glazman, Steven M. Girvin, Michel H. Devoret, and Robert J. Schoelkopf. 2011. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Physical review letters 107 24 (2011), 240501.
[39]
Alexandru Paler. 2019. SurfBraid: A concept tool for preparing and resource estimating quantum circuits protected by the surface code. ArXiv abs/1902.02417 (2019).
[40]
B. Reichardt. 2018. Fault-tolerant quantum error correction for Steane's seven-qubit color code with few or no extra qubits. arXiv: Quantum Physics (2018).
[41]
Peter W Shor. 1995. Scheme for reducing decoherence in quantum computer memory. Physical review A 52, 4 (1995), R2493.
[42]
Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange, and Fernando Magno Quintão Pereira. 2018. Qubit allocation. In Proceedings of the 2018 International Symposium on Code Generation and Optimization. 113--125.
[43]
Andrew Steane. 1996. Multiple-particle interference and quantum error correction. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 452, 1954 (1996), 2551--2577.
[44]
Andrew M Steane. 1996. Error correcting codes in quantum theory. Physical Review Letters 77, 5 (1996), 793.
[45]
Bochen Tan and Jason Cong. 2020. Optimal layout synthesis for quantum computing. In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD). IEEE, 1--9.
[46]
Swamit S. Tannu, Zachary Myers, Prashant J. Nair, Douglas M. Carmean, and Moinuddin K. Qureshi. 2017. Taming the Instruction Bandwidth of Quantum Computers via Hardware-Managed Error Correction. 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) (2017), 679--691.
[47]
Swamit S Tannu and Moinuddin K Qureshi. 2019. Mitigating measurement errors in quantum computers by exploiting state-dependent bias. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 279--290.
[48]
Robert Wille, Lukas Burgholzer, and Alwin Zulehner. 2019. Mapping quantum circuits to IBM QX architectures using the minimal number of SWAP and H operations. In 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE, 1--6.
[49]
Eric J Zhang, Srikanth Srinivasan, Neereja Sundaresan, Daniela F Bogorin, Yves Martin, Jared B Hertzberg, John Timmerwilke, Emily J Pritchett, Jeng-Bang Yau, Cindy Wang, et al. 2020. High-fidelity superconducting quantum processors via laser-annealing of transmon qubits. arXiv preprint arXiv:2012.08475 (2020).
[50]
Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38, 7 (2018), 1226--1236.

Cited By

View all
  • (2024)Ecmas: Efficient Circuit Mapping and Scheduling for Surface Code2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)10.1109/CGO57630.2024.10444874(158-169)Online publication date: 2-Mar-2024
  • (2023)Q-BEEP: Quantum Bayesian Error Mitigation Employing Poisson Modeling over the Hamming SpectrumProceedings of the 50th Annual International Symposium on Computer Architecture10.1145/3579371.3589043(1-13)Online publication date: 17-Jun-2023
  • (2023)Astrea: Accurate Quantum Error-Decoding via Practical Minimum-Weight Perfect-MatchingProceedings of the 50th Annual International Symposium on Computer Architecture10.1145/3579371.3589037(1-16)Online publication date: 17-Jun-2023
  • Show More Cited By

Index Terms

  1. A synthesis framework for stitching surface code with superconducting quantum devices

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      ISCA '22: Proceedings of the 49th Annual International Symposium on Computer Architecture
      June 2022
      1097 pages
      ISBN:9781450386104
      DOI:10.1145/3470496
      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Sponsors

      In-Cooperation

      • IEEE CS TCAA: IEEE CS technical committee on architectural acoustics

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 11 June 2022

      Check for updates

      Author Tags

      1. compiler
      2. quantum computing
      3. quantum error correction

      Qualifiers

      • Research-article

      Funding Sources

      Conference

      ISCA '22
      Sponsor:

      Acceptance Rates

      ISCA '22 Paper Acceptance Rate 67 of 400 submissions, 17%;
      Overall Acceptance Rate 543 of 3,203 submissions, 17%

      Upcoming Conference

      ISCA '25

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)499
      • Downloads (Last 6 weeks)60
      Reflects downloads up to 17 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Ecmas: Efficient Circuit Mapping and Scheduling for Surface Code2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)10.1109/CGO57630.2024.10444874(158-169)Online publication date: 2-Mar-2024
      • (2023)Q-BEEP: Quantum Bayesian Error Mitigation Employing Poisson Modeling over the Hamming SpectrumProceedings of the 50th Annual International Symposium on Computer Architecture10.1145/3579371.3589043(1-13)Online publication date: 17-Jun-2023
      • (2023)Astrea: Accurate Quantum Error-Decoding via Practical Minimum-Weight Perfect-MatchingProceedings of the 50th Annual International Symposium on Computer Architecture10.1145/3579371.3589037(1-16)Online publication date: 17-Jun-2023
      • (2023)QuCS: A Lecture Series on Quantum Computer Software and System2023 IEEE International Conference on Quantum Computing and Engineering (QCE)10.1109/QCE57702.2023.20323(40-48)Online publication date: 17-Sep-2023

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media