Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A Survey of Music Visualization Techniques

Published: 18 July 2021 Publication History

Abstract

Music Information Research (MIR) comprises all the research topics involved in modeling and understanding music. Visualizations are frequently adopted to convey better understandings about music pieces, and the association of music with visual elements has been practiced historically and extensively. We investigated papers related to music visualization and organized the proposals into categories according to their most prominent aspects: their input features, the aspects visualized, the InfoVis technique(s) used, if interaction was provided, and users’ evaluations. The MIR and the InfoVis community can benefit by identifying trends and possible new research directions within the music visualization topic.

References

[1]
Simon Attfield, Gabriella Kazai, and Mounia Lalmas. 2011. Towards a science of user engagement (position paper). In Proceedings of the WSDM Workshop on User Modelling for Web Applications.
[2]
David Baskerville. 2017. Music Business Handbook and Career Guide (11th ed.). SAGE Publications, Inc.
[3]
Tony Bergstrom, Karrie Karahalios, and John C. Hart. 2007. Isochords: Visualizing structure in music. In Proceedings of the Graphics Interface Conference, Christopher G. Healey and Edward Lank (Eds.), Vol. 234. ACM Press, 297–304.
[4]
Dmitry Bogdanov, Nicolas Wack, Emilia Gómez, Sankalp Gulati, Perfecto Herrera, Oscar Mayor, Gerard Roma, Justin Salamon, José R. Zapata, and Xavier Serra. 2013. ESSENTIA: An open-source library for sound and music analysis. In Proceedings of the ACM Multimedia Conference, Alejandro Jaimes, Nicu Sebe, Nozha Boujemaa, Daniel Gatica-Perez, David A. Shamma, Marcel Worring, and Roger Zimmermann (Eds.). ACM, 855–858.
[5]
Gabriel Dias Cantareira, Luis Gustavo Nonato, and Fernando Vieira Paulovich. 2016. MoshViz: A detail+overview approach to visualize music elements. IEEE Trans. Multim. 18, 11 (2016), 2238–2246.
[6]
Wing-Yi Chan, Huamin Qu, and Wai-Ho Mak. 2010. Visualizing the semantic structure in classical music works. IEEE Trans. Vis. Comput. Graph. 16, 1 (2010), 161–173.
[7]
Elaine Chew and Alexandre R. J. François. 2005. Interactive multi-scale visualizations of tonal evolution in MuSA.RT Opus 2. Comput. Entertain. 3, 4 (2005), 1–16.
[8]
Peter Ciuha, Bojan Klemenc, and Franc Solina. 2010. Visualization of concurrent tones in music with colours. In Proceedings of the 18th International Conference on Multimedia, Alberto Del Bimbo, Shih-Fu Chang, and Arnold W. M. Smeulders (Eds.). ACM, 1677–1680.
[9]
Matthew Cooper, Jonathan Foote, Elias Pampalk, and George Tzanetakis. 2006. Visualization in audio-based music information retrieval. Comput. Music. J. 30, 2 (2006), 42–62.
[10]
Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti, Robert V. Kenyon, and John C. Hart. 1992. The cave—Audio visual experience automatic virtual environment. Commun. ACM 35, 6 (1992), 64–72.
[11]
Weiwei Cui, Shixia Liu, Li Tan, Conglei Shi, Yangqiu Song, Zekai Gao, Huamin Qu, and Xin Tong. 2011. TextFlow: Towards better understanding of evolving topics in text. IEEE Trans. Vis. Comput. Graph. 17, 12 (2011), 2412–2421.
[12]
Alan Dix, Janet Finlay, Gregory D. Abowd, and Russel Beale. 2004. Human–Computer Interaction (3rd ed.). Pearson Education Limited.
[13]
Patrick J. Donnelly and John W. Sheppard. 2013. Classification of musical timbre using Bayesian networks. Comput. Music. J. 37, 4 (2013), 70–86.
[14]
Brian Evans. 1969. The graphic design of musical structure: Scores for listeners : Incantation and mortuos plango, vivos voco first 8 partials from bell analysis key centers for 8 sections. 1–6. Electroacoustic Music Studies Network. http://vassar-sound-design.pbworks.com/f/The+Graphic+Design+of+Musical+Structure.pdf.
[15]
Morwaread M. Farbood, Egon C. Pasztor, and Kevin Jennings. 2004. Hyperscore: A graphical sketchpad for novice composers. IEEE Comput. Graph. Applic. 24, 1 (2004), 50–54.
[16]
Sam Ferguson, Andrew Vande Moere, and Densil Cabrera. 2005. Seeing sound: Real-time sound visualisation in visual feedback loops used for training musicians. In Proceedings of the Ninth International Conference on Information Visualisation (IV’05). 97–102.
[17]
Joyce Horn Fonteles, Maria Andréia Formico Rodrigues, and Victor Emanuel Dias Basso. 2013. Creating and evaluating a particle system for music visualization. J. Vis. Lang. Comput. 24, 6 (2013), 472–482.
[18]
Jonathan Foote. 1999. Visualizing music and audio using self-similarity. In Proceedings of the 7th ACM International Conference on Multimedia (Part 1) (MULTIMEDIA’99). Association for Computing Machinery, New York, NY, 77–80.
[19]
Issei Fujishiro, Naoki Haga, and Masanori Nakayama. 2015. SeeGroove: Supporting groove learning through visualization. In Proceedings of the International Conference on Cyberworlds. IEEE Computer Society, 189–192.
[20]
Günther Gediga and Kai-Christoph Hamborg. 1997. Heuristische evaluation und isometrics: Ein vergleich. In Software-Ergonomie’97: Usability Engineering - Integration von Mensch-Computer-Interaktion und Software-Entwicklung. Gemeinsame Fachtagung des German Chapter of the ACM, der Gesellschaft für Informatik (Gl) und der Technischen Universität Dresden vom 3. bis 6. März 1997 in Dresden, Rüdiger Liskowsky, Boris M. Velichkovsky, and Wolfgang Wünschmann (Eds.). Berichte des German Chapter of the ACM, Vol. 49. Teubner, 145–155. Retrieved from http://dl.mensch-und-computer.de/handle/123456789/1084.
[21]
Anastasia Gumulia, Bartlomiej Puzon, and Naoko Kosugi. 2011. Music visualization: Predicting the perceived speed of a composition—Misual project. In Proceedings of the 19th International Conference on Multimedia, K. Selçuk Candan, Sethuraman Panchanathan, Balakrishnan Prabhakaran, Hari Sundaram, Wu-chi Feng, and Nicu Sebe (Eds.). ACM, 949–952.
[22]
Yoonchang Han, Jae-Hun Kim, and Kyogu Lee. 2017. Deep convolutional neural networks for predominant instrument recognition in polyphonic music. IEEE ACM Trans. Audio Speech Lang. Process. 25, 1 (2017), 208–221.
[23]
Andrea Hanke. 2017. Tools for feature extraction: Exploring essentia. Topics in Computer Music, RWTH Aachen, 1–9. https://hpac.cs.umu.se/teaching/sem-mus-17/Reports/Hanke.pdf.
[24]
Aki Hayashi, Takayuki Itoh, and Masaki Matsubara. 2011. Colorscore—Visualization and condensation of structure of classical music. In Proceedings of the 15th International Conference on Information Visualisation. 420–425.
[25]
Dorien Herremans and Ching-Hua Chuan. 2017. A multi-modal platform for semantic music analysis: Visualizing audio-and score-based tension. In Proceedings of the IEEE 11th International Conference on Semantic Computing (ICSC).419–426.
[26]
Rumi Hiraga. 2002. Case study: A look of performance expression. In IEEE Visualization (VIS’02). 501–504.
[27]
Rumi Hiraga and Noriyuki Matsuda. 2004. Graphical expression of the mood of music. In Proceedings of the IEEE International Conference on Multimedia and Expo. IEEE Computer Society, 2035–2038.
[28]
Rumi Hiraga, Reiko Mizaki, and Issei Fujishiro. 2002. Performance visualization: A new challenge to music through visualization. In Proceedings of the 10th ACM International Conference on Multimedia, Lawrence A. Rowe, Bernard Mérialdo, Max Mühlhäuser, Keith W. Ross, and Nevenka Dimitrova (Eds.). ACM, 239–242.
[29]
Rumi Hiraga, Fumiko Watanabe, and Issei Fujishiro. 2002. Music learning through visualization. In Proceedings of the 2nd International Conference on WEB Delivering of Music, Christoph Busch, Michael Arnold, Paolo Nesi, and Martin Schmucker (Eds.). IEEE Computer Society, 101–108.
[30]
Eric J. Humphrey, Juan Pablo Bello, and Yann LeCun. 2012. Moving beyond feature design: Deep architectures and automatic feature learning in music informatics. In Proceedings of the 13th International Society for Music Information Retrieval Conference (ISMIR’12). 403–408. Retrieved from http://ismir2012.ismir.net/event/papers/403-ismir-2012.pdf.
[31]
Eric J. Isaacson. 2005. What you see is what you get: On visualizing music. In Proceedings of International Symposium in Music Information Retrieval. 389–395. Retrieved from http://ismir2005.ismir.net/proceedings/1129.pdf.
[32]
Brian M. Jackson. 2018. The Music Producer’s Survival Guide: Chaos, Creativity, and Career in Independent and Electronic Music (2nd ed.). Routledge. https://www.routledge.com/The-Music-Producers-Survival-Guide-Chaos-Creativity-and-Career-in/Jackson/p/book/9781138697850.
[33]
Kunal Jathal. 2017. Real-time timbre classification for tabletop hand drumming. Comput. Music. J. 41, 2 (2017), 38–51.
[34]
Nobuhiko Jin, Naoki Haga, and Issei Fujishiro. 2016. SeeGroove2: An orbit metaphor for interactive groove visualization. In Proceedings of the International Conference on Cyberworlds, Alexei Sourin (Ed.). IEEE Computer Society, 131–134.
[35]
Ruslan Kamolov, Penousal Machado, and Pedro Cruz. 2013. Musical flocks. In Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques Conference. ACM, 93.
[36]
Hideki Kawahara, Eri Haneishi, and Kaori Hagiwara. 2017. Realtime feedback of singing voice information for assisting students learning music therapy. In Proceedings of the International Conference on Orange Technologies (ICOT). IEEE, 99–102.
[37]
Jeeeun Kim, Swamy Ananthanarayan, and Tom Yeh. 2015. Seen music: Ambient music data visualization for children with hearing impairments. In Proceedings of the 14th International Conference on Interaction Design and Children (IDC’15). 426–429.
[38]
Naoko Kosugi. 2010. Misual: Music visualization based on acoustic data. In Proceedings of the 12th International Conference on Information Integration and Web-based Applications and Services, Gabriele Kotsis, David Taniar, Eric Pardede, Imad Saleh, and Ismail Khalil (Eds.). ACM, 609–616.
[39]
Jonathan Lazar, Jinjuan Feng, and Harry Hochheiser. 2017. Research Methods in Human-computer Interaction, 2nd Edition. Morgan Kaufmann. Retrieved from http://www.sciencedirect.com/science/book/9780128053904.
[40]
Arto Lehtiniemi and Jukka Holm. 2012. Using animated mood pictures in music recommendation. In Proceedings of the 16th International Conference on Information Visualisation, Ebad Banissi, Stefan Bertschi, Camilla Forsell, Jimmy Johansson, Sarah Kenderdine, Francis T. Marchese, Muhammad Sarfraz, Liz J. Stuart, Anna Ursyn, Theodor G. Wyeld, Hanane Azzag, Mustapha Lebbah, and Gilles Venturini (Eds.). IEEE Computer Society, 143–150.
[41]
James R. Lewis. 1995. IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for use. Int. J. Hum.-comput. Interact. 7, 1 (1995), 57–78.
[42]
Kyung Ae Lim and Christopher Raphael. 2010. InTune: A system to support an instrumentalist’s visualization of intonation. Comput. Music. J. 34, 3 (2010), 45–55.
[43]
Hugo Lima, Carlos Santos, and Bianchi Serique Meiguins. 2019. Visualizing the semantics of music. In Proceedings of the 23rd International Conference on Information Visualisation, Ebad Banissi, Anna Ursyn, Mark W. McK. Bannatyne, Nuno Datia, Rita Francese, Muhammad Sarfraz, Theodor G. Wyeld, Fatma Bouali, Gilles Venturini, Hanane Azzag, Mustapha Lebbah, Marjan Trutschl, Urska Cvek, Heimo Müller, Minoru Nakayama, Sebastian Kernbach, Loredana Caruccio, Michele Risi, Ugo Erra, Autilia Vitiello, and Veronica Rossano (Eds.). IEEE, 352–357.
[44]
Shixia Liu, Weiwei Cui, Yingcai Wu, and Mengchen Liu. 2014. A survey on information visualization: Recent advances and challenges. Vis. Comput. 30, 12 (2014), 1373–1393.
[45]
Gareth Loy. 1985. Musicians make a standard: The MIDI phenomenon. Comput. Mus. J. 9, 4 (1985), 8–26. Retrieved from http://www.jstor.org/stable/3679619.
[46]
Wakako Machida and Takayuki Itoh. 2011. Lyricon: A Visual music selection interface featuring multiple icons. In Proceedings of the 15th International Conference on Information Visualisation, Ebad Banissi, Stefan Bertschi, Remo Aslak Burkhard, Urska Cvek, Martin J. Eppler, Camilla Forsell, Georges G. Grinstein, Jimmy Johansson, Sarah Kenderdine, Francis T. Marchese, Carsten Maple, Marjan Trutschl, Muhammad Sarfraz, Liz J. Stuart, Anna Ursyn, and Theodor G. Wyeld (Eds.). IEEE Computer Society, 145–150.
[47]
Esteban Maestre, Panagiotis Papiotis, Marco Marchini, Quim Llimona, Oscar Mayor, Alfonso Pérez, and Marcelo M. Wanderley. 2017. Enriched multimodal representations of music performances: Online access and visualization. IEEE Multim. 24, 1 (2017), 24–34.
[48]
Akira Maezawa and Hiroshi G. Okuno. 2015. Bayesian audio-to-score alignment based on joint inference of timbre, volume, tempo, and note onset timings. Comput. Music. J. 39, 1 (2015), 74–87.
[49]
Delfina Malandrino, Donato Pirozzi, Gianluca Zaccagnino, and Rocco Zaccagnino. 2015. A color-based visualization approach to understand harmonic structures of musical compositions. In Proceedings of the 19th International Conference on Information Visualisation, Ebad Banissi, Mark W. McK. Bannatyne, Fatma Bouali, Remo Burkhard, John Counsell, Urska Cvek, Martin J. Eppler, Georges G. Grinstein, Weidong Huang, Sebastian Kernbach, Chun-Cheng Lin, Feng Lin, Francis T. Marchese, Chi Man Pun, Muhammad Sarfraz, Marjan Trutschl, Anna Ursyn, Gilles Venturini, Theodor G. Wyeld, and Jian J. Zhang (Eds.). IEEE Computer Society, 56–61.
[50]
Delfina Malandrino, Donato Pirozzi, and Rocco Zaccagnino. 2018. Visualization and music harmony: Design, implementation, and evaluation. In Proceedings of the 22nd International Conference Information Visualisation, Ebad Banissi, Rita Francese, Mark W. McK. Bannatyne, Theodor G. Wyeld, Muhammad Sarfraz, João Moura Pires, Anna Ursyn, Fatma Bouali, Nuno Datia, Gilles Venturini, Giuseppe Polese, Vincenzo Deufemia, Tania Di Mascio, Marco Temperini, Filippo Sciarrone, Delfina Malandrino, Rocco Zaccagnino, Paloma Díaz, Fragkiskos Papadopoulo, Antonio Fernández Anta, Alfredo Cuzzocrea, Michele Risi, Ugo Erra, and Veronica Rossano (Eds.). IEEE Computer Society, 498–503.
[51]
Arpi Mardirossian and Elaine Chew. 2007. Visualizing music: Tonal progressions and distributions. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR’07). 189–194. Retrieved from http://ismir2007.ismir.net/proceedings/ISMIR2007_p189_mardirossian.pdf.
[52]
Georgios Marentakis and Kristoffer Jensen. 2014. The timbre engine - progress report. January 2001 (2014).
[53]
Stephen McAdams. 2013. Musical Timbre Perception (3rd ed.). Elsevier Inc., 35–67.
[54]
Alex McLean, Frederic F. Leymarie, and Geraint A. Wiggins. 2007. Apollonius diagrams and the representation of sounds and music. In Proceedings of the 4th International Symposium on Voronoi Diagrams in Science and Engineering. IEEE Computer Society, 276–281.
[55]
Philip McLeod and Geoff Wyvill. 2003. Visualization of musical pitch. In Proceedings of the Computer Graphics International Conference. IEEE Computer Society, 300–305.
[56]
Matthias Miller, Alexandra Bonnici, and Mennatallah El-Assady. 2019. Augmenting music sheets with harmonic fingerprints. In Proceedings of the ACM Symposium on Document Engineering (DocEng’19). 17:1–17:10.
[57]
J. B. Mitroo, Nancy Herman, and Norman I. Badler. 1979. Movies from music: Visualizing musical compositions. In Proceedings of the 6th Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’79). Association for Computing Machinery, New York, NY, 218–225.
[58]
Meinard Müller. 2015. Fundamentals of Music Processing - Audio, Analysis, Algorithms, Applications. Springer.
[59]
Tamara Munzner. 2014. Visualization Analysis and Design. A. K. Peters. Retrieved from http://www.cs.ubc.ca/%7Etmm/vadbook/.
[60]
Tomoyasu Nakano, Masataka Goto, and Yuzuru Hiraga. 2007. MiruSinger: A singing skill visualization interface using real-time feedback and music CD recordings as referential data. In Proceedings of the 9th IEEE International Symposium on Multimedia - Workshops.
[61]
Suranga Chandima Nanayakkara, Elizabeth Taylor, Lonce Wyse, and S. H. Ong. 2007. Towards building an experiential music visualizer. In Proceedings of the 6th International Conference on Information, Communications Signal Processing. 1–5.
[62]
Lene Nielsen. 2019. Personas—User Focused Design. Springer London.
[63]
Donald A. Norman. 2013. The Design of Everyday Things.
[64]
Kazuo Ohmi. 2007. Music visualization in style and structure. J. Vis. 10, 3 (2007), 257–258.
[65]
Allan V. Oppenheim and Ronald W. Schafer. 1998. Discrete-time Signal Processing (2nd ed.). Vol. 1. Prentice-Hall, Inc.
[66]
Jack Ox. 2001. 2 performances in the 21st century virtual color organ: GridJam and im januar am Nil. In Proceedings of the 7th International Conference on Virtual Systems and Multimedia.
[67]
Larry Polansky and Richard Bassein. 1992. Possible and Impossible Melody: Some Formal Aspects of Contour. Journal of Music Theory 36, 2 (1992), 259–284.
[68]
Dionysios Politis, Dimitrios Margounakis, and Konstantinos Mokos. 2004. Visualizing the chromatic index of music. In Proceedings of the 4th International Conference on WEB Delivering of Music. IEEE Computer Society, 102–109.
[69]
Jordi Pons and Xavier Serra. 2017. Designing efficient architectures for modeling temporal features with convolutional neural networks. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’17). 2472–2476.
[70]
Jordi Pons, Olga Slizovskaia, Rong Gong, Emilia Gómez, and Xavier Serra. 2017. Timbre analysis of music audio signals with convolutional neural networks. In Proceedings of the 25th European Signal Processing Conference (EUSIPCO’17). 2744–2748.
[71]
Roberto De Prisco, Delfina Malandrino, Donato Pirozzi, Gianluca Zaccagnino, and Rocco Zaccagnino. 2017. Understanding the structure of musical compositions: Is visualization an effective approach?Inf. Vis. 16, 2 (2017), 139–152.
[72]
Roberto De Prisco, Delfina Malandrino, Donato Pirozzi, Gianluca Zaccagnino, and Rocco Zaccagnino. 2018. Evaluation study of visualisations for harmonic analysis of 4-part music. In Proceedings of the 22nd International Conference Information Visualisation, Ebad Banissi, Rita Francese, Mark W. McK. Bannatyne, Theodor G. Wyeld, Muhammad Sarfraz, João Moura Pires, Anna Ursyn, Fatma Bouali, Nuno Datia, Gilles Venturini, Giuseppe Polese, Vincenzo Deufemia, Tania Di Mascio, Marco Temperini, Filippo Sciarrone, Delfina Malandrino, Rocco Zaccagnino, Paloma Díaz, Fragkiskos Papadopoulo, Antonio Fernández Anta, Alfredo Cuzzocrea, Michele Risi, Ugo Erra, and Veronica Rossano (Eds.). IEEE Computer Society, 484–489.
[73]
Markus Rovito. 2016. The MIDI Association Launches at NAMM 2016. Retrieved from https://www.emusician.com/gear/the-midi-association-launches-at-namm-2016.
[74]
Justin Salamon and Emilia Gómez. 2012. Melody extraction from polyphonic music signals using pitch contour characteristics. IEEE Trans. Speech Audio Process. 20, 6 (2012), 1759–1770.
[75]
Craig Stuart Sapp. 2001. Harmonic visualizations of tonal music. Retrieved from http://hdl.handle.net/2027/spo.bbp2372.2001.029.
[76]
Craig Stuart Sapp. 2005. Visual hierarchical key analysis. Comput. Entertain. 3, 4 (2005), 1–19.
[77]
Susanne Scheel. 2006. Music visualization—The interplay of color and sound. Ars Electronica 2006. Hatje Cantz Verlag, Ostfildern-Ruit, pp 273–289.
[78]
Xavier Serra, Michela Magas, Emmanouil Benetos, Magdalena Chudy, S. Dixon, Arthur Flexer, Emilia Gómez, F. Gouyon, Perfecto Herrera, Sergi Jordà, Oscar Paytuvi, G. Peeters, Jan Schlüter, H. Vinet, and G. Widmer. 2013. Roadmap for Music Information ReSearch Geoffroy Peeters (Ed.). Creative Commons BY-NC-ND 3.0 license.
[79]
Yang Shi and Cheng Yang. 2013. Celestia: A vocal interaction music game. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Wendy E. Mackay, Stephen A. Brewster, and Susanne Bødker (Eds.). ACM, 2647–2650.
[80]
Najereh Shirzadian, Judith A. Redi, Thomas Röggla, Alice Panza, Frank Nack, and Pablo César. 2017. Immersion and togetherness: How live visualization of audience engagement can enhance music events. In Proceedings of the 14th International Conference on Advances in Computer Entertainment Technology, Adrian David Cheok, Masahiko Inami, and Teresa Romão (Eds.). Lecture Notes in Computer Science, Vol. 10714. Springer, 488–507.
[81]
Ben Shneiderman. 1996. The eyes have it: A task by data type taxonomy for information visualizations. In Proceedings of the IEEE Symposium on Visual Languages. IEEE Computer Society, 336–343.
[82]
Artur Silic and Bojana Dalbelo Basic. 2010. Visualization of text streams: A survey. Lecture Notes in Computer Science, vol. 6277. Springer, Berlin, Heidelberg.
[83]
Sean M. Smith and Glen N. Williams. 1997. A visualization of music. In Proceedings. Visualization’97 (Cat. No. 97CB36155). IEEE, 499–503.
[84]
Jon Snydal and Marti A. Hearst. 2005. ImproViz: Visual explorations of jazz improvisations. In Extended Abstracts on Human Factors in Computing System (CHI’05). 1805–1808.
[85]
Sean Soraghan, Felix Faire, Alain Renaud, and Ben Supper. 2018. A new timbre visualization technique based on semantic descriptors. Comput. Music. J. 42, 1 (2018).
[86]
Beyond Sound. 2014. Beyond sound: The college and career guide in music technology. Choice Rev. Online 51, 05 (Jan. 2014).
[87]
John Stainer and William Barret. 2009. A Dictionary of Musical Terms. Cambridge University Press.
[88]
Michael Taenzer, Burkhard C. Wünsche, and Stefan Müller. 2019. Analysis and visualisation of music. In International Conference on Electronics, Information, and Communication (ICEIC’19). 1–6.
[89]
Paolo Tagliolato. 2009. Synaesthetic analysis, exploring music structures by multimedia representation. prometheusz12, a novel 3D visualization tool. Retrieved from http://hdl.handle.net/2027/spo.bbp2372.2009.022.
[90]
Petri Toiviainen. 2005. Visualization of tonal content with self-organizing maps and self-similarity matrices. Comput. Entertain. 3, 4 (2005), 1–10.
[91]
Srinivasan Umesh, Leon Cohen, and Douglas J. Nelson. 1999. Fitting the Mel scale. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. 217–220.
[92]
Leonel Valbom and Adérito Marcos. 2007. An immersive musical instrument prototype. IEEE Comput. Graph. Applic. 27, 4 (2007), 14–19.
[93]
Viswanath Venkatesh, Michael G. Morris, Gordon B. Davis, and Fred D. Davis. 2003. User acceptance of information technology: Toward a unified view. MIS Quart. 27, 3 (2003), 425–478. Retrieved from http://misq.org/user-acceptance-of-information-technology-toward-a-unified-view.html.
[94]
Gottfried von Bismarck. 1974. Timbre of steady sounds: A factorial investigation of its verbal attributes. Acta Acustica United with Acustica 30, 3 (1974), 146–159.
[95]
Martin Wattenberg. 2002. Arc diagrams: Visualizing structure in strings. In IEEE Symposium on Information Visualization (INFOVIS’02). 110–116.
[96]
Cong Xie, Wei Chen, Xinxin Huang, Yueqi Hu, Scott Barlowe, and Jing Yang. 2014. VAET: A visual analytics approach for e-transactions time-series. IEEE Trans. Vis. Comput. Graph. 20, 12 (2014), 1743–1752.
[97]
Ji Soo Yi, Youn ah Kang, John T. Stasko, and Julie A. Jacko. 2007. Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. Vis. Comput. Graph. 13, 6 (2007), 1224–1231.

Cited By

View all
  • (2024)Practical Application and Case Analysis of Computer Image Vision Technology in Music Education and TeachingJournal of Cases on Information Technology10.4018/JCIT.34791626:1(1-16)Online publication date: 30-Jul-2024
  • (2024)PM4Music: A Scriptable Parametric Modeling Interface for Music Visualizer Design Using PM4VRProceedings of the 2024 8th International Conference on Digital Signal Processing10.1145/3653876.3653906(33-38)Online publication date: 23-Feb-2024
  • (2024)Visualize Music Using Generative Arts2024 IEEE Conference on Artificial Intelligence (CAI)10.1109/CAI59869.2024.00273(1516-1521)Online publication date: 25-Jun-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 54, Issue 7
September 2022
778 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/3476825
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 18 July 2021
Accepted: 01 April 2021
Revised: 01 February 2021
Received: 01 November 2019
Published in CSUR Volume 54, Issue 7

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Music visualization
  2. human-computer interaction
  3. information visualization
  4. music information retrieval

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)468
  • Downloads (Last 6 weeks)36
Reflects downloads up to 22 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Practical Application and Case Analysis of Computer Image Vision Technology in Music Education and TeachingJournal of Cases on Information Technology10.4018/JCIT.34791626:1(1-16)Online publication date: 30-Jul-2024
  • (2024)PM4Music: A Scriptable Parametric Modeling Interface for Music Visualizer Design Using PM4VRProceedings of the 2024 8th International Conference on Digital Signal Processing10.1145/3653876.3653906(33-38)Online publication date: 23-Feb-2024
  • (2024)Visualize Music Using Generative Arts2024 IEEE Conference on Artificial Intelligence (CAI)10.1109/CAI59869.2024.00273(1516-1521)Online publication date: 25-Jun-2024
  • (2024)Visual signatures for music mood and timbreThe Visual Computer10.1007/s00371-024-03417-zOnline publication date: 31-May-2024
  • (2024)Hearing with the eyes: modulating lyrics typography for music visualizationThe Visual Computer10.1007/s00371-023-03239-5Online publication date: 19-Jan-2024
  • (2023)MUSE: Visual Analysis of Musical Semantic SequenceIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.317536429:9(4015-4030)Online publication date: 1-Sep-2023
  • (2023)Collection of Design Directions for the Realization of a Visual Interface with Haptic Feedback to Convey the Notion of Sonic Grain to DHH Students2023 4th International Symposium on the Internet of Sounds10.1109/IEEECONF59510.2023.10335449(1-7)Online publication date: 26-Oct-2023
  • (2023)New Approach to Timbre Visualization2023 International Conference on Cyberworlds (CW)10.1109/CW58918.2023.00036(193-200)Online publication date: 3-Oct-2023
  • (2023)Deep Learning-based Visualization of Music Mood2023 International Conference on Cyberworlds (CW)10.1109/CW58918.2023.00015(32-39)Online publication date: 3-Oct-2023
  • (2023)Design of Music Signal Spectrum Visualization System Based on Collaborative Filtering Algorithm2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE)10.1109/AIKIIE60097.2023.10390367(1-5)Online publication date: 2-Nov-2023
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media