Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3396730.3396734acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiceccConference Proceedingsconference-collections
research-article

Salp Swarm Algorithm-Based Nonlinear Robust Control of Magnetic Levitation System Using Feedback Linearization Approach

Published: 29 May 2020 Publication History

Abstract

This paper presents a robust nonlinear controller design for a magnetic levitation system (MLS). The feedback linearization method is utilized to transform the nonlinear model of MLS into the controller form. The controller is then designed and its parameters are optimized by the Salp Swarm Algorithm (SSA). Extensive MATLAB simulations are performed to evaluate the performance of the proposed controller as well as to compare it with PID and LQR controllers which are optimized by the SSA as well. Obtained results demonstrate that the proposed controller successfully tracks different kinds of reference signals (step, sine, and square) even in the presence of the system parameter perturbations and outperforms the PID and LQR controllers.

References

[1]
B. Bidikli and A. J. C. E. P. Bayrak, "A self-tuning robust full-state feedback control design for the magnetic levitation system," vol. 78, pp. 175--185, 2018. DOI= https://doi.org/10.1016/j.conengprac.2018.06.017
[2]
P. Balko and D. Rosinová, "Modeling of magnetic levitation system," in 2017 21st International Conference on Process Control (PC), 2017, pp. 252-257: IEEE. DOI= https://doi.org/10.1109/pc.2017.7976222
[3]
Y. Eroğhi and G. Ablay, "Cascade sliding mode-based robust tracking control of a magnetic levitation system," vol. 230, no. 8, pp. 851--860, 2016. DOI= https://doi.org/10.1177/0959651816656749
[4]
M. Ono, S. Koga, H. J. I. I. Ohtsuki, and M. Magazine, "Japan's superconducting maglev train," vol. 5, no. 1, pp. 9--15, 2002.DOI= https://doi.org/10.1109/5289.988732
[5]
N. Al-Muthairi and M. J. M. p. i. e. Zribi, "Sliding mode control of a magnetic levitation system," vol. 2004, no. 2, pp. 93--107, 2004.
[6]
X. Zhang, M. Mehrtash, and M. B. J. I. A. T. o. M. Khamesee, "Dual-axial motion control of a magnetic levitation system using Hall-effect sensors," vol. 21, no. 2, pp. 1129--1139, 2015. DOI= https://doi.org/10.1109/tmech.2015.2479404
[7]
P. J. A. Bania, Wydział EAIiE, Katedra Automatyki, Kraków, "Model i sterowanie magnetyczną lewitacją," 1999.
[8]
X. J. A. Xu, "Constrained control of input-output linearizable systems using control sharing barrier functions," vol. 87, pp. 195--201, 2018. DOI= https://doi.org/10.1016/j.automatica.2017.10.005
[9]
R. Harvey, Z. Qu, and T. J. I. C. S. L. Namerikawa, "An optimized input/output-constrained control design with application to microgrid operation," vol. 4, no. 2, pp. 367--372, 2019. DOI= https://doi.org/10.1109/lcsys.2019.2929159
[10]
F. Zhao, S. C. Loh, and J. A. May, "Phase-space nonlinear control toolbox: The maglev experience," in International Hybrid Systems Workshop, 1997, pp. 429-444: Springer. DOI= https://doi.org/10.1007/3-540-49163-5_23
[11]
M. Aliasghary, M. A. Shoorehdeli, A. Jalilvand, and M. Teshnehlab, "Magnetic levitation control based-on neural network and feedback error learning approach," in 2008 IEEE 2nd International Power and Energy Conference, 2008, pp. 1426-1430: IEEE. DOI= https://doi.org/10.1109/pecon.2008.4762702
[12]
M. Sheikh, S. Muyeen, R. Takahashi, T. Murata, and J. Tamura, "Improvement of load frequency control with fuzzy gain scheduled superconducting magnetic energy storage unit," in 2008 18th International Conference on Electrical Machines, 2008, pp. 1-6: IEEE. DOI= https://doi.org/10.1109/icelmach.2008.4799958
[13]
N. Boonsatit, C. J. J. o. C. Pukdeboon, Automation, and E. Systems, "Adaptive fast terminal sliding mode control of magnetic levitation system," vol. 27, no. 4, pp. 359--367, 2016. DOI= https://doi.org/10.1007/s40313-016-0246-2
[14]
P. A. Q. Assis and R. K. H. J. I. L. A. T. Galvao, "Sliding mode predictive control of a magnetic levitation system employing multi-parametric programming," vol. 15, no. 2, pp. 239--248, 2017. DOI= https://doi.org/10.1109/tla.2017.7854618
[15]
S. k. Verma, S. Yadav, and S. K. Nagar, "Optimization of Fractional Order PID Controller for MLS Grey Wolf Optimizer," Springer, 2017. DOI= https://doi.org/10.1007/s40313-017-0305-3
[16]
J. de Jesús Rubio, L. Zhang, E. Lughofer, P. Cruz, A. Alsaedi, and T. J. N. Hayat, "Modeling and control with neural networks for a magnetic levitation system," vol. 227, pp. 113--121, 2017. DOI= https://doi.org/10.1016/j.neucom.2016.09.101
[17]
H. Wang, G. Shen, and J. J. J. o. M. T. Zhou, "Control strategy of maglev vehicles based on particle swarm algorithm," vol. 22, no. 1, pp. 30--36, 2014. DOI= https://doi.org/10.1007/s40534-013-0031-x
[18]
S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. J. A. i. E. S. Mirjalili, "Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems," vol. 114, pp. 163--191, 2017. DOI= https://doi.org/10.1016/j.advengsoft.2017.07.002
[19]
S. M. H. Baygi and A. Karsaz, "A hybrid optimal PID-LQR control of structural system: a case study of salp swarm optimization," in 2018 3rd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC), 2018, pp. 1-6: IEEE. DOI= https://doi.org/10.1109/csiec.2018.8405416
[20]
D. Guha, P. K. Roy, S. J. I. G. Banerjee, Transmission, and Distribution, "Maiden application of SSA-optimised CC-TID controller for load frequency control of power systems," vol. 13, no. 7, pp. 1110--1120, 2018. DOI= https://doi.org/10.1049/iet-gtd.2018.6100
[21]
H. M. Hasanien and A. A. J. E. P. S. R. El-Fergany, "Salp swarm algorithm-based optimal load frequency control of hybrid renewable power systems with communication delay and excitation cross-coupling effect," vol. 176, p. 105938, 2019. DOI= https://doi.org/10.1016/j.epsr.2019.105938
[22]
W. Yu and X. J. I. P. V. Li, "A magnetic levitation system for advanced control education," vol. 47, no. 3, pp. 9032--9037, 2014.DOI= https://doi.org/10.3182/20140824-6-za-1003.00147
[23]
H. K. Khalil, Nonlinear control. Pearson Higher Ed, 2014.
[24]
C.-T. Chen, Linear system theory and design. Oxford University Press, Inc., 1998.
[25]
D. Maiti, A. Acharya, M. Chakraborty, A. Konar, and R. Janarthanan, "Tuning PID and PI/λ D Δ controllers using the integral time absolute error criterion," in 2008 4th International Conference on Information and Automation for Sustainability, 2008, pp. 457-462: IEEE. DOI= https://doi.org/10.1109/iciafs.2008.4783932

Cited By

View all
  • (2022)An Improved PID Control Scheme for DC Servo Motor using Salp Swarm Algorithm2022 23rd International Middle East Power Systems Conference (MEPCON)10.1109/MEPCON55441.2022.10021723(1-8)Online publication date: 13-Dec-2022

Index Terms

  1. Salp Swarm Algorithm-Based Nonlinear Robust Control of Magnetic Levitation System Using Feedback Linearization Approach

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICECC '20: Proceedings of the 3rd International Conference on Electronics, Communications and Control Engineering
    April 2020
    73 pages
    ISBN:9781450374996
    DOI:10.1145/3396730
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 29 May 2020

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. LQR
    2. MLS
    3. Magnetic levitation system
    4. SSA
    5. feedback linearization
    6. optimal control
    7. robust control

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    ICECC 2020

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 30 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)An Improved PID Control Scheme for DC Servo Motor using Salp Swarm Algorithm2022 23rd International Middle East Power Systems Conference (MEPCON)10.1109/MEPCON55441.2022.10021723(1-8)Online publication date: 13-Dec-2022

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media